Acknowledgement
본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행되었으며(No. 20203020040010), 한국기계연구원 기관 기본사업(Project ID: NK237G)의 지원을 받아 수행된 결과입니다.
References
- G. Erdmann, "Future economics of the fuel cell housing market", Int. J. Hydrogen Energy, Vol. 28, No. 7, 2003, pp. 685-694, doi: https://doi.org/10.1016/s0360-3199(02)00281-1.
- I. Staffell and R. J. Green. "Estimating future prices for stationary fuel cells with empirically derived experience curves", Int. J. Hydrogen Energy, Vol. 34, No. 14, 2009, pp. 5617-5628, doi: https://doi.org/10.1016/j.ijhydene.2009.05.075.
- M. Naeini, J. S. Cotton, and T. A. Adams, "Economically optimal sizing and operation strategy for solid oxide fuel cells to effectively manage longterm degradation", Ind. Eng. Chem. Res., Vol. 60, No. 47, 2021, pp. 17128-17142, doi: https://doi.org/10.1021/acs.iecr.1c03146.
- V. T. Giap, Y. D. Lee, Y. S. Kim, and K. Y. Ahn, "Techno-economic analysis of reversible solid oxide fuel cell system couple with waste steam", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 1, 2019, pp. 21-28, doi: https://doi.org/10.7316/KHNES.2019.30.1.21.
- S. Y. Hwang, M. J. Kim, J. H. Lee, and W. Y. Lee, "A simulation based study on the economical operating strategies for a residential fuel cell system", Trans Korean Hydrogen New Energy Soc, Vol. 20, No. 2, 2009, pp. 104-115. Retrieved from https://koreascience.kr/article/JAKO2009181331449 95.pdf.
- B. Gim, "An economic analysis of domestic fuel cell vehicles considering subsidy and hydrogen price", Trans Korean Hydrogen New Energy Soc, Vol. 26, No. 1, 2015, pp. 35-44, doi: https://doi.org/10.7316/KHNES.2015.26.1.035.
- Battelle Memorial Institute, "Manufacturing cost analysis of PEM fuel cell systems for 5- and 10-kW backup power applications", Energy.gov, 2016. Retrieved from https://www.energy.gov/sites/default/files/2016/12/f34/fcto_cost_analysis_pem_fc_5-10kw_backup_power_0.pdf.
- Battelle Memorial Institute, "Manufacturing cost analysis of 100 and 250 kW fuel cell systems for primary power and combined heat and power applications", Energy.gov, 2016. Retrieved from https://www.energy.gov/sites/default/files/2016/07/f33/fcto_battelle_mfg_cost_analysis_pp_chp_fc_systems.pdf.
- Battelle Memorial Institute, "Manufacturing cost analysis of 1, 5, 10 and 25 kW polymer electrolyte membrane (PEM) fuel cell systems for material handling applications", Energy.gov, 2017. Retrieved from https://www.energy.gov/eere/fuelcells/downloads/manufacturing-cost-analysis-1-5-10-and-25-kw-polymer-electrolyte-membrane.
- Battelle Memorial Institute, "Manufacturing cost analysis of 1, 5, 10 and 25 kW fuel cell systems for primary power and combined heat and power applications", Energy.gov, 2017. Retrieved from https://www.energy.gov/sites/default/files/2018/02/f49/fcto_battelle_mfg_cost_analysis_1%20_to_25kw_pp_chp_fc_systems_jan2017_0.pdf.
- B. D. James, J. M. HuyaKouadio, C. Houchins, and D. A. DeSantis, "Mass production cost estimation of direct H2 PEM fuel cell systems for transportation applications: 2018 update", Energy.gov, 2018. Retrieved from https://www.energy.gov/sites/default/files/2020/02/f71/fcto-sa-2018-transportation-fuel-cell-cost-analysis-2.pdf.
- B. D. James, J. M. HuyaKouadio, C. Houchins, and D. A. DeSantis, "Final report: mass production cost estimation of direct H2 PEM fuel cell systems for transportation applications (2012-2016)", Energy.gov, 2016, doi: https://doi.org/10.2172/1346414.
- D. W. Hengeveld and S. T. Revankar, "Economic analysis of a combined heat and power molten carbonate fuel cell system", Journal of Power Sources, Vol. 165, No. 1, 2007, pp. 300-306, doi: https://doi.org/10.1016/j.jpowsour.2006.12.053.
- R. Remick and D. Wheeler, "Molten carbonate and phosphoric acid stationary fuel cells: overview and gap analysis", National Renewable Energy Laboratory, 2010, doi: https://doi.org/10.2172/990108.
- D. Steward, M. Penev, G. Saur, W. Becker, and J. Zuboy, "Fuel cell power model version 2: startup guide, system designs, and case studies. Modeling electricity, heat, and hydrogen generation from fuel cell-based distributed energy systems", Office of Scientific and Technical Information, 2013, doi: https://doi.org/10.2172/1087789.
- M. Lauterwasser, "Case studies in real estate development", Becker + Becker, 2011. Retrieved from https://www.hydrogen.energy.gov/pdfs/htac_june2011_becker.pdf.
- A. Bejan, G. Tsatsaronis, and M. J. Moran, "Thermal design and optimization", John Wiley & Sons, USA, 1996.
- Lazard, "Lazard's levelized cost of energy analysis-version 12.0", Lazard, 2018. Retrieved from https://www.lazard.com/media/450773/lazards-levelized-cost-of-energy-version-120-vfinal.pdf.
- Bloom Energy, "Petition of bloom energy corporation for a declaratory ruling for the location and construction of a 1350-kilowatt fuel cell customer side distributed resource at Southern Connecticut State University", Vol. 21, No. 2, 2020. Retrieved from https://portal.ct.gov/-/media/CSC/3_Petitions-medialibrary/Petitions_MediaLibrary/MediaPetitionNos1401-1410/PE1407/PE1407-20200814-DCLTR.pdf.
- V. Singh and J. Fehrs, "The work that goes into renewable energy", Renew. Energy Policy Proj., 2001. Retrieved from https://globalurban.org/The_Work_that_Goes_in-to_Renewable_Energy.pdf.