• Title/Summary/Keyword: Stabilizing Piles

Search Result 32, Processing Time 0.026 seconds

Development of the Analyzing Method for Earth Retaining Cantilever Walls using Stabilizing Piles (억지말뚝을 이용한 자립식 흙막이 공법의 해석기법 개발)

  • Kim, Chang-Young;Im, Jong-Chul;Park, Lee-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.998-1007
    • /
    • 2006
  • In former times, It is obvious that the earth retaining cantilever wall using stabilizing piles is definitely superior to the other methods due to economical efficiency and the efficiency of construction through model tests using a soil tank and practical application(Kim, 2006). However, this method was not proved in theoretical basis from the viewpoint of geotechnical engineering. Accordingly, a variety of model experiments in order to analyze the behavior of the earth retaining cantilever wall and stabilizing piles according to excavation step and earth pressure and stress acting on stabilizing piles according to excavation step were performed. On the basis of analyzing the result of model tests using a soil tank, this study suggests failure mechanism of clods and a method calculating virtual supported point. In addition, this study contributes to developing the analyzing method of retaining piles, stabilizing piles and beams connecting two piles and, this study helps this method to be established as a new design method through analyzing the results of model tests using a soil tank.

  • PDF

An Experimental Study on the Stabilizing Effect of Piles against Sliding (사면에 설치된 억지말뚝의 활동억지효과에 대한 실험적 연구)

  • Hong Won-Pyo;Song Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.69-80
    • /
    • 2005
  • In order to investigate the stabilizing effect of piles against sliding, a series of model tests were carried out. The model apparatus was designed to perform the model test of slope reinforced by stabilizing piles. The instrumentation system was used to measure the deflection of stabilizing piles during slope failure. The stabilizing effect of the piles in a row with some interval ratio is larger than the isolated pile without interval ratio. Because the prevention force of piles in a row increased due to the soil arching effect between piles during slope failure. Especially, the maximum value of prevention ratio was presented at 0.5 of interval ratio. If the required prevention ratio is 1.1, the interval ratio must be installed from 0.5 to 0.8. Also, the stabilizing effect of piles against sliding is excellent at the interval ratio between 0.5 and 0.8. This value can be proposed as the criterion of the interval ratio between piles against slope failure.

Reinforcement Effect of Stabilizing Piles in Large-scale Cut Slops (대절토사면에 보강된 억지말뚝의 활동억지효과에 관한 연구)

  • 홍원표;한중근;송영석;신도순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.65-81
    • /
    • 2003
  • During the last few decades in Korea, the development of hillside or mountain areas has rapidly increased for infrastructure construction such as railroads, highways and housing. Many landslides have occurred during these constructions. Also, the amount and scale of damage caused by landslides have increased every year. In the case of Far East Asia including Korea, the damage of landslides is consequently reported during the wet season. In this paper, the effect of stabilizing piles on slope stability is checked and the behavior of slope soil and piles are observed throughout the year by field measurements in the large-scale cut slopes. In particular a large-scale cut slope situated on the construction site for the express highway in Donghae, Korea. First of all, The behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil gradually increased and rapidly decreased at depth of sliding surface indicating that the depth of sliding surface below the ground surface can be predicted. On the basis of being able to predict the depth of the sliding surface, stabilizing piles were designed and constructed in this slope. To ensure the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. The maximum deflection of piles is measured at the pile head and it is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

  • PDF

A Case Study of Extra Reinforcement by Road Extension work on Existing Cut Slope Reinforced with Counterweight Fill and Stabilizing Piles (압성토 및 억지말뚝으로 보강된 도로의 확장공사로 인한 추가 보강사례 연구)

  • Park, Jeong-Yong;Kim, Woo-Seong;Kim, Jae-Kyoung;Yang, Tae-Sun;Na, Kyung-Joon
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.67-72
    • /
    • 2008
  • To confirm the stability of a cut slope in the road extension construction site, several investigations were carried out and countermeasures of slope was studied. This paper describes a study of design case of extra reinforcement on existing cut slope reinforced by preloading and piles in roads. To investigate the effect of stabilizing piles installed in a cut slope, an instrumentation system also designed, was. As a result that the stabilizing file and earth anchor are considered as the extra reinforcement, both stabilizing pile and earth anchor guarantee the stability of cut slope. However, stabilizing pile is selected in aspects of economy and continuity to the existing cut slop reinforcement including counterweight fill and stabilizing piles.

  • PDF

The Behavior of Stabilizing Piles installed in a Large-Scale Cut Slope (대규모 절개사면에 설치된 억지말뚝의 거동)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2009
  • The effect of stabilizing piles on cut slopes is checked and the behavior of slope soil and piles are observed throughout the year by field measurements on the large-scale cut slopes. First of all, the behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil are gradually increased and rapidly decreased at depth of sliding surface. As the result of measuring deformation, the depth of sliding surface below the ground surface can be known. Based on the measuring the depth of the sliding surface, some earth retention system including stabilizing piles were designed and constructed in this slope. To check the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. As the result of instrumentation, the maximum deflection of piles is measured at the pile head. It is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. The deflection of piles is increased during cutting slope in front of piles for the construction of soil nailing. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

Numerical Analysis of Self-Supported Earth Retaining Wall with Stabilizing Piles (2열 자립식 흙막이 공법의 거동특성에 관한 수치해석적 연구)

  • Sim, Jae-Uk;Jeong, Sang-Seom;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.35-46
    • /
    • 2015
  • In this study, the behavior of self-supported earth retaining wall with stabilizing piles was investigated by using a numerical study and field tests in urban excavations. This earth retaining wall can provide stable support against lateral earth pressures through its use of stabilizing piles that provide passive resistance to lateral earth pressures arising due to ground excavations. Field tests at two sites were performed to verify the performance of instrumented retaining wall with stabilizing piles. Furthermore, detailed 3D numerical analyses were conducted to provide insight into the in situ wall behavior. The 3D numerical methodology in the present study represents the behavior of the self-supported earth retaining wall with stabilizing piles. A number of 3D numerical analyses were carried out on the self-supported earth retaining wall with stabilizing piles to assess the results stemming from wide variations of influencing parameters such as the soil condition, the pile spacing, the distance between the front pile and the rear pile, and the pile embedded depth. Based on the results of the parametric study, the maximum horizontal displacement and the maximum bending moment significantly decreased when the retaining wall with stabilizing piles is used. Moreover, the horizontal displacement reduction effect of influencing parameters such as the pile spacing and the distance between the front pile and the rear pile is more sensitive in sandy soil, with a higher friction angle compared to clayey soil. In engineering practice, reducing the pile spacing and increasing the distance between the front pile and the rear pile can effectively improve the stability of the self-supported earth retaining wall with stabilizing piles.

Model Test of Stabilizing Measures for Ground Failure Due to Soft Ground Excavation (연약지반 굴착에 따른 지반파괴 억지대책 실내모형 실험)

  • Kim, Jae-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.907-917
    • /
    • 2014
  • When conducting excavations after burying the soft ground, even if the retaining walls are installed, failure often occurs within backfill. In order to minimize the occurrences of failures, model test was performed after the installation of stabilizing piles to investigate the stabilizing effects. The model chamber is set up with clay foundation reinforced with and without stabilizing piles. During the excavation of clay foundation, the subsidence, pore water pressure, and soil pressure along the excavation were measured. As a result of the model test, the increase of excavation levels and the reduction of subsidence of back ground were observed with the stabilizing piles, compared to those without the stabilizing piles. The installation of stabilizing piles does not influence the pore water pressure change, but induces less subsidence rate. In addition, the depth of excavation has a significant effect on the back ground and it was evaluated that the maximum subsidence occurs as it is closer to the excavation point.

A Study on Effect of Stabilizing Pile on Stability of Infinite Slope (무한사면의 안정성에 미치는 억지말뚝의 영향에 대한 이론적 연구)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.496-503
    • /
    • 2016
  • To analyze an infinite slope that is reinforced with stabilizing piles, the forces on the stabilizing pile were estimated by the theory of plastic deformation and the theory of plastic flow and the effects of diverse factors on the factor of safety of an infinite slope were investigated. According to the results of the analyses, the factor of the safety of the slope reinforced with stabilized piles were increased tremendously and the factor of safety decreased as the center to center distance of the stabilizing pile increased. The effect of the existence of seepage of the infinite slope with stabilizing piles on the factor of safety appears to be insignificant. Considering the formulated factor of safety of an infinite slope with stabilizing piles, the width and length of the element of the infinite slope and force on the stabilizing pile influence the factor of safety of the infinite slope with a stabilizing pile including the soil strength parameter, inclination of the slope and depth of the slope, which are important for calculating the factor of safety of a non-reinforced infinite slope. The factor of safety of an infinite slope with stabilizing piles derived from the theory of plastic deformation were increased significantly with the internal friction angle of the soil, and the minimum and the maximum factor of safety under the conditions considered in this study were 13.7 and 65.6, respectively. As the diameter of the stabilizing pile increased, the forces on the stabilizing pile also increased but the factor of safety of the infinite slope with stabilizing piles decreased due to the effects of the width and the length of the element of the infinite slope. The factor of safety of the infinite slope with stabilizing piles derived from plastic flow were much larger than that of the non-reinforced infinite slope and the factor safety of the infinite slope with a stabilizing pile increased with increasing product of the flow velocity and plastic viscosity ( ) and the factor of safety of the infinite slope with stabilizing piles decreased with increasing center to center distance of the pile.

An Experimental Study on the Reinforcement Effect of Installed composite stiffener on Earth Retaining Walls using Stabilizing Piles (억지말뚝 흙막이공법에 설치된 복합버팀의 보강효과에 관한 실험적 연구)

  • Kim, Tae-Hyo;Im, Jong-Chul;Park, Lee-Keun;Kwon, Joung-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1224-1239
    • /
    • 2008
  • The earth retaining walls using stabilizing piles can be applied to shallow excavation works without any stiffener. But, It demends a variety of installed composite stiffener on the earth retaining walls when it is installed as deep excavation works. Because, it causes an excessive displacement of walls. This research tried to overcome the problems created by the above issues and intended to apply the composite stiffener. The model test, focused on the effect of installed composite stiffener, measured the bending stress with stabilizing piles and walls, the settlement of earth surface, the displacement of walls for a step excavation and an increase in strip load. With the test results and soil deformation analysis, the reinforcement effect(relating to control displacement and earth presure) was analyzed in a qualitative and quantitative manner. It is expected to overcome a deep excavation works.

  • PDF

A Study on the Rapid Construction Method for Ground Excavation (지반굴착을 위한 급속시공 방안 연구)

  • Sim, Jae-Uk;Son, Sung-Gon;An, Hyung-Jun;Kim, In-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1251-1258
    • /
    • 2008
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall(SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below dredge level, tied together at head of soldier piles and landslide stabilizing piles by beams. There are three types of excavation wall structures: standard method for medium retained heights(<8.0m), internal excavation method and slope excavation method for deep-excavation applications(>8.0m). In the present study, the measured data from seven different sites which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea.

  • PDF