• 제목/요약/키워드: Stabilizer agent

검색결과 91건 처리시간 0.032초

연약지반 표층안정처리를 위한 고화재의 최적조합 산정에 관한 실험적 연구 (An Experimental Study on Optimal Mixture Ratio of Hardening Agent for Surface Soil Stabilization)

  • 천병식;김진춘;최현석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.17-24
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization of soft ground. This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specifications. Hardening agent is properly mixtured with Fly ash, Gypsum, Slag and Cement for the ettringite hydrates which is effective for early stabilization of unconsolidated soil. The treated soil is the clay which are widely found here and there in Korea. In this study, preliminary tests were performed to get optimal mixture ratio of stabilizer ingredient, and marine clay in Jin-Hae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soil were peformed to get optimal mixture ratio for 16 stabilizer material of 6 type, and stabilizer mixing was determined.

  • PDF

해성점성토의 표층안정처리 공법에 관한 연구 (A Study on the Surface Soil Stabilization Method on Marine Clay)

  • 천병식;한기열
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.129-134
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization a sat ground This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specificutions. Hardening agent is properly mixed with Fly ash, Gyosum, Slag and Cement for the etmmngite hydrates which is dective for early stabilization of unconsoliokrred soil. \ulcornerhe treated soil is the clay tint is widely found here and there in Koresz In this study, preliminary tests were performed to get optirml mixture ratio of stabilizer ingredient, and mrvine clay in Jin-Hae was used to get physid and Md properties. Labomtory tests of 50 stabilized soil were performed to get optimal mixture mtio for 16-stabilizer merial a 6 types, a d stabilizer mixing was determined

  • PDF

초연약해성점성토 지반의 표층안정처리를 위한 최적고화재 배합비 산정에 관한 연구 (The Evaluation of Optimum Hardening Agent Mixture Ratio for Surface Stabilization on Extremely Soft Marine Clay)

  • 천병식;한기열
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.408-415
    • /
    • 2001
  • Hardening agent has been the traditional material for surface soil stabilization of soft ground. The aim of this study if to determine optimal mixture ratio of hardening agent in accordance with the required design specifications. Hardening agent consists of fly ash, gypsum, slag and cement for the ettringite hydrates and if effective for early stabilization of unconsolidated soil. The raw ground material is the clay that is widely found here and there in Korea. In this study, preliminary tests were performed to get optimal mixture ratio of stabilizer ingredient and marine clay in Jinhae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soils were performed to get optimal mixture ratio for 16-stabilizer materials of 6 types, and mixture ratio of stabilizer ingredient and marine clay was determined.

  • PDF

고화재에 의한 해성점성토의 표층안정처리에 관한 연구 (A Study on the Surface Soil Stabilization on Marine Clay by the Hardening Agent)

  • 천병식;양진석
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.92-97
    • /
    • 2001
  • Hardening agents have been the traditional material for surface soil stabilization of soft ground. This study aims at determining the optimal mixture ratio of the hardening agent in accordance with the required design specifications. Hardening agents which consists of fly ash, gypsum, slag and cement for the ettringite hydrates is effective for early stabilization of unconsolidated soil. The raw ground material is the clay that is widely found in Korea. In this study, preliminary tests were performed to get an optimal mixture ratio of the stabilizer ingredient and marine clay from Jinhae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soils were performed to get an optimal mixture ratio for 16-stabilizer materials of 6 types, and a mixture ratio of the stabilizer ingredient and marine clay was determined.

  • PDF

선박화재 적용 단백포 소화약제의 안정제에 따른 소화특성 (Characteristics of Protein Foam Agent by Stabilizer on the Ship Fire Extinguishment)

  • 이응우;신창섭
    • 한국안전학회지
    • /
    • 제30권4호
    • /
    • pp.79-85
    • /
    • 2015
  • Onboard fire extinguishing system is important to protect cargo and human lives and every oil tanker has foam type fire extinguishing system. Because of environmental problem, agent which contains materials such as Perfluorinated compounds are regulated and the development of the environmental friendly agent is required. The protein foam has less environmental pollution problem and has an excellent fire extinguish performance to oil fire. In the research, bivalency metal salts were added as stabilizer to increase fire resistance and stability of the foam. Ferrous sulfate, Iron chloride and Nickel chloride were used and to adjust to vessel, sea water was applied. As a stabilizer increased, the expansion ratio was raised. However 25% drainage time was decreased over 2.0 wt.% which is knowable that the foam brokes easily. The amount of generated foam was measured to check fluidity of foam and it appeared that when $FeSO_4$ 1.2 wt.% was added, the amount of generated foam reached large and also the 25% drainage time was high. To evaluate the fire extinguishing performance for oil fire, the small scale oil fire test was executed. When $FeSO_4$ 1.2 wt.% was added, fire extinguishing time was in its shortest which informs fluidity of foam and stability are important factors on fire extinguishing efficiency.

ZnSe 나노분말 합성에 미치는 환원제와 첨가제의 영향 (Influence of Reducing Agents and Additives on the Synthesis of ZnSe Nanoparticles)

  • 백금지;이다경;이민서;송하연;홍현선
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.233-240
    • /
    • 2020
  • Nano-sized ZnSe particles are successfully synthesized in an aqueous solution at room temperature using sodium borohydride (NaBH4) and thioglycolic acid (TGA) as the reducing agent and stabilizer, respectively. The effects of the mass ratio of the reducing agent to Se, stabilizer concentration, and stirring time on the synthesis of the ZnSe nanoparticles are evaluated. The light absorption/emission properties of the synthesized nanoparticles are characterized using ultraviolet-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, and particle size analyzer (PSA) techniques. At least one mass ratio (NaBH4/Se) of the reducing agent should be added to produce ZnSe nanoparticles finer than 10 nm and to absorb UV-vis light shorter than the ZnSe bulk absorption wavelength of 460 nm. As the ratio of the reducing agent increases, the absorption wavelengths in the UV-vis curves are blue-shifted. Stirring in the atmosphere acts as a deterrent to the reduction reaction and formation of nanoparticles, but if not stirred in the atmosphere, the result is on par with synthesis in a nitrogen atmosphere. The stabilizer, TGA, has an impact on the Zn precursor synthesis. The fabricated nanoparticles exhibit excellent photo-absorption/discharge characteristics, suggesting that ZnSe nanoparticles can be alloyed without the need for organic solutions or high-temperature environments.

실리콘 정포제의 종류에 따른 폴리우레탄 폼 지수제의 내수성 특성에 관한 연구 (Studies on the Water Resistance Properties of the Polyurethane Foam Silicone Foal Control Agent according to the Type of Silicone Foam Stabilizer)

  • 김근허;김현민;김성래;김영근
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권2호
    • /
    • pp.60-66
    • /
    • 2016
  • 본 연구는 실리콘계 정포제의 특성에 따른 폴리우레탄 폼 지수제의 cell 구조와 흡수량 변화를 알아보기 위하여 6종의 정포제를 사용하여 폴리우레탄 폼 지수제를 제조하여 FE-SEM으로 분석한 결과 실리콘 정포제의 실록산 주사슬 말단에 PO n개가 결합되어 있는 DC-193, DC-2585, DC-5125, DC-198의 cell 구조는 close cell로 확인이 되었고, 실리콘 정포제의 실록산 주사슬 말단에 EO n개가 결합 되어 있는 DC-5043과 DC-5598은 open cell 구조로 나타났다. 또한 cell 구조 변화에 따른 흡수량 에서는 close cell의 크기가 가장 세밀하고 균일한 DC-193의 흡수량이 가장 적게 나타나 내수성이 가장 우수한 것으로 나타났으며 open cell의 크기가 가장 크게 형성된 DC-5043의 흡수량이 가장 많은 것으로 나타났다. 이들의 방수성능을 콘크리트 구조물을 모사하여 시험한 결과 누수가 없음을 확인하였다.

스리랑카 길어깨 적용을 위한 안정처리 재료의 적용성 평가 연구 (Application of Soil Stabilization Technique for Shoulder Construction in Sri Lanka)

  • 박기수;박희문
    • 한국도로학회논문집
    • /
    • 제20권4호
    • /
    • pp.21-26
    • /
    • 2018
  • PURPOSES : The objective of this study is to evaluate the application of soil stabilization method for soft shoulder construction in the iRoad Project of Sri Lanka. METHODS : Firstly, the quantitative analysis of soil strength improvement due to soil stabilization was done for soil samples collected from iRoad construction sites. Two types of soils were selected from iRoad Project sites and prepared for soil stabilization testing by the Road Development Authority. Secondly, the appropriate stabilizer was selected at given soil type based on test results. Two different stabilizers, ST-1 and ST-2, produced in Korea were used for estimating soil strength improvements. Finally, the optimum stabilizer content was determined for improving shoulder performance. The uniaxial compressive strength (UCS) test was conducted to evaluate the strength of stabilized soil samples in accordance with ASTM D 1633. The use of bottom ash as a stabilizer produced from power plant in Sri Lanka was also reviewed in this task. RESULTS : It is found from the UCS testing that a 3% use of soil stabilizer can improve the strength up to 2~5 times in stabilized soft shoulder soils with respect to unstabilized soils. It is also observed from UCS testing that the ST-1 shows high strength improvement in 3% of stabilizer content but the strength improvement rate with increase of stabilizer content is relatively low compared with ST-2. The ST-2 shows a low UCS value at 3% of content but the UCS values increase significantly with increase of stabilizer content. When using the ST-2 as stabilizing agent, the 5% is recommended as minimum content based on UCS testing results. Based on the testing results for bottom ash replacement, the stabilized sample with bottom ash shows the low strength value. CONCLUSIONS : This paper is intended to check the feasibility for use the soil stabilization technique for shoulder construction in Sri Lanka. The use of soil stabilizer enables to improve the durability and strength in soft shoulder materials. When applying the bottom ash as a soil stabilizer, various testings should be conducted to satisfy the specification criteria.

DMAB를 사용한 무전해 Ni-B 합금 도금 I. 오스테나이트 스텐레스강 상의 석출반응에 대한 전기화학적 거동 (A Study on Electroless Ni-B Plating with DMAB as Reducing Agent. I. The Electrochemical Behavior of Precipitation Reaction on Austenite Stainless Steel Substrates)

  • 이창래;박해덕;강성군
    • 한국표면공학회지
    • /
    • 제32권2호
    • /
    • pp.172-181
    • /
    • 1999
  • The effect of the DMAB concentration, temperature, deposition time, and stabilizer concentration on the precipitation reaction of the electroless nickel plating using dimethylamine borane (DMAB) as reducing agent was investigated to by the weight gain and electrochemical method. The deposition rate was dependent with DMAB concentration. The polarization resistance of the precipitation reaction was reduced with DMAB concentration. The precipitation reaction rate of Ni-B deposits was controlled by the oxidation rate of DMAB as the source of electron. The boron content of the deposit was constant at about 5.5wt%, even when DMAB concentration in the solution was increased. The effect of temperature and stabilizer ($Pb(NO_3)_2$) concentration on deposition rate was shown to have co-dependent behaviors.

  • PDF

안정화제 주입량에 따른 중금속 오염토양의 안정화 분석 (The Dose Effect of Stabilizing Agent on Stabilization of Heavy Metals in Soil)

  • 최희철;윤이준;이병용;최상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권4호
    • /
    • pp.7-13
    • /
    • 2020
  • In this study, a stabilization method was applied to stabilize heavy metals in soils collected from a domestic contaminated area and a Canadian mine site. The stabilizing agent used in the experiment was a solidifying agent developed by KERT Co., Ltd., Korea. The agent was applied to the samples at varying weight ratios of 0, 2, 5, 7, and 10% (w/w). and the concentrations of heavy metals in the effluent were monitored at predetemined time intervals. The results indicated that the stabilization efficiency of heavy metals (Cd, Cu, Pb) increased proportionally until the agent was increased to 5%, which showed almost no leaching of heavy metals after 28 days after agent application. Therefore, addition of 5% relative to soil mass was proposed to be the optimum dose for the stabilization agent.