• Title/Summary/Keyword: Stabilization mode

Search Result 174, Processing Time 0.022 seconds

Optimal Voltage Control Algorithm of Small Hydro Generators for Voltage Stabilization in Distribution system with large scaled PV systems (대용량 태양광전원이 연계된 배전계통의 전압안정화를 위한 소수력발전기의 최적전압제어 알고리즘)

  • Choi, Hong-Yeol;Choi, Sung-Sik;Kang, Min-Kwan;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.824-832
    • /
    • 2018
  • According to the government's policy to demonstrate and expand the renewable energy sources, distributed generators such as PV and WP are installed and operated in distribution systems. However, there are many issues related to power quality problems including over voltage and under voltage of customers. In order to overcome these problems, the electric power company have installed a step voltage regulator (SVR) in primary feeders interconnected with distributed generators, and also have established the technical guidelines for the distributed generators to stabilize the customer voltages in distribution systems. However, it is difficult to maintain the customer voltages within allowable limit. Therefore, this paper reviews the problems of voltage control by SVR in a distribution systems interconnected with a large amount of PV systems, and proposes characteristics of operating range and voltage control limit of the small hydropower generators. Also, with the estimation of the influence to the power system voltages from the voltage control mode of generators, this paper proposes the optimal voltage control algorithm of the small hydropower generators. By programming the proposed algorithm into control simulator of exciter, it is confirmed that the proposed algorithm can contribute the voltage stabilization in distribution systems interconnected with large scaled PV systems.

Evaluation of analgesic and antiinflammatory activity of Ophiorrhiza nicobarica, an ethnomedicine from Nicobar Islands, India

  • Chattopadhyay, Debprasad;Das, Sonali;Mandal, Asit Baran;Arunachalam, G;Bhattacharya, SK
    • Advances in Traditional Medicine
    • /
    • v.7 no.4
    • /
    • pp.395-408
    • /
    • 2007
  • This study reports the analgesic, anti-inflammatory and membrane-stabilizing property of alcoholic extract of Ophiorrhiza nicobarica (ON), a wild herb, used as an anti-infective ethnomedicine of Nicobarese and Shompen tribes of Great Nicobar Island, India. We for the first time investigated the analgesic and antiinflammatory potential of this herb in acute, subacute and chronic model of inflammation in Swiss albino mice and Wistar albino rats, along with sheep RBC-induced sensitivity and membrane stabilization. The acetic acid induced writhing, tail flick and tail immersion tests are used as a model for evaluating analgesic activity; while the carrageenin-induced paw oedema was used as the model for acute inflammation, dextran-induced oedema as sub-acute and cotton-pellateinduced granuloma as chronic inflammatory model. The probable mode by which ON mediate its effect on inflammatory conditions was studied on sheep RBC-induced sensitivity and membrane stabilization. The in vitro results revealed that the ON extract possesses significant (P < 0.05) dose dependent analgesic and antiinflammatory activity at 200 and 300 mg/kg and its fractions at 50 mg/kg, p.o. respectively, compared to the control groups. However, the extract failed to exhibit membrane-stabilizing property as it unable to reduce the level of haemolysis of RBC exposed to hypotonic solution. The acute toxicity studies of ON extract in rats and mice revealed that the extract was nontoxic even up to 3.0 g/kg body weight of the animals, with a high safety profile. We have isolated ursolic acid, ${\beta}$-sitosterol and harmaline respectively, from the bioactive part of the extract. The results indicated that the O. nicobarica is indeed beneficial in primary health care, and suggest that its anti-inflammatory activity may not be related to membrane-stabilization.

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

A Study on the Modal Parameters for Cable System of Bridge (교량 케이블시스템의 모드변수에 관한 연구)

  • Lee, Hyunchol;Jo, Yeong-hoon;Kim, Jinsoo;Park, Kyoungho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.48-59
    • /
    • 2019
  • In recent years, the type of bridge where cables such as suspension bridge and cable-stayed bridge are the main factors in the construction of long-range bridges has been soaring. The effects of cables on these structures are very large, and for structural analysis, it is necessary to study the cable and the structural changes according to the mode characteristics of the cables. In particular, cables are directly connected to camber adjustment, which conveys load effects on girders to tower, and are important components in the overall structure, and since the initial tension on the construction is compared with the tension over time, this study was conducted to help identify the condition of the bridge's aging and abnormalities. Therefore, in this study, the characteristics of the mode from the mode analysis through the impact hammer to the mass of the cable and the change in the length of the cable are analyzed.

Frequency Dependency of Electrical Property Stabilization during Vulcanization of Modified NR/IR Blends (개질된 NR/IR 블랜드의 가황 반응에서 나타나는 전기적 특성 안정화의 주파수 의존성)

  • Ahn, Won-Sool
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.179-185
    • /
    • 2004
  • Frequency dependency or electrical property stabilization during vulcanization of modified NR/IR composite materials was studied using in-situ electrical property measuring technique. Volume resistivity(p) before and after vulcanization reaction of the sample was measured as the function or frequency in the range or 1Hz to 10kHz at reaction temperatures of 130, 140, 150, and $160^{\circ}C$, respectively. A double stabilization mode of frequency dependency was observed, in which a slow stabilization process of p to a value of ca. $1.0{\times}10^7\;{\Omega}-cm$ occurred after a drastic initial decrease from ca. $9.0{\times}10^7\;{\Omega}-cm$. In addition, notable temperature dependencies of p values were also observed before and after vulcanization reaction, that is, p values at 130 and $140^{\circ}C$ after vulcanization were observed as about 1/3 of those values before vulcanization. All the observed facts were considered as the results from the interaction between the electrode and the bulk sample materials, i.e., electronic charge-discharge, and from the structure change of samples including CB rearrangement by the vulcanization.

Active Stabilization for Surge Motion of Moored Vessel in Irregular Head Waves (불규칙 선수파랑 중 계류된 선박의 전후동요 제어)

  • Lee, Sang-Do;Truong, Ngoc Cuong;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.437-444
    • /
    • 2020
  • This study was focused on the stabilization of surge motions of a moored vessel under irregular head seas. A two-point moored vessel shows strong non-linearity even in regular sea, owing to its inherent non-linear restoring force. A long-crested irregular wave is subjected to the vessel system, resulting in more complex nonlinear behavior of the displacement and velocities than in the case of regular waves. Sliding mode control (SMC) is implemented in the moored vessel to control both surge displacement and surge velocity. The SMC can provide a closed-loop system with performance and robustness against parameter uncertainties and disturbances; however, chattering is the main drawback for implementing SMC. The goal of minimizing the chattering and state convergence with accuracy is achieved using a quasi-sliding mode that approximates the discontinuous function via a continuous sigmoid function. Numerical simulations were conducted to validate the effectiveness of the proposed control algorithm.

Stabilization and characterization of a 10 GHz harmonically mode-locked Er-doped fiber ring laser by suppression of relaxation oscillation (완화진동억압을 이용한 10 GHz 고조모드잠금된 고리형 어븀첨가 광섬유 레이저의 출력 안정화 및 특성 측정)

  • 장지웅;이유승;전영민;임동건
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.58-64
    • /
    • 2002
  • Using Mach-Zehnder type intensity modulator, we stabilized a 10 GHz harmonically mode-locked dispersion-compensated fiber ring laser using a feedback controlling system, and we measured its stability. The laser was stabilized for more than 16 hours by controlling the cavity length to suppress the relaxation oscillation frequency component which had caused the laser output instability. The ms timing jitter and ms amplitude noise were measured to be 260-524 fsec and 4~11.5%, respectively, and BER test measurement showed a value of 10$^{-13}$ .

Soft-Switching Buck Converter Dropped Voltage Stress of a free-Wheeling Diode Using a Single Switching Device (단일 스위칭소자를 이용하여 환류다이오드의 전압스트레스를 강하시킨 소프트-스위칭 벅 컨버터)

  • 이건행;김영석;김명오
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.576-583
    • /
    • 2004
  • This paper presents a buck circuit topology of high-frequency with a single switching device. It solved the problem which arised from hard-switching in high-frequency using a resonant snubber and operating under the principle of ZCS turn-on and ZVS turn-off commutation schemes. In the existing circuit, it has the voltage stress that is almost twice of input voltage in a free-wheeling diode. In the proposed circuit, it has the voltage stress that is lower than input voltage with modifing a location of free -wheeling diode. In this paper, it expained the circuit operation of each mode and analyzed feedback-loop stabilization. Also it confirmed the waveform of each mode with simulation result. The experiment result verified the simulation waveform and compared the voltage stress of a free -wheeling diode in the exsiting circuit with the voltage stress of that in the proposed circuit. Moreover, it compares and analyzes the proposed circuit's efficiency with the hard-switching circuit's efficiency according to the change of load current.

Study on PVA mode using the UV curable reactive mesogen (RM) (광경화성 단분자를 이용한 PVA모드의 8-도메인 형성방안 연구)

  • Kim, Woo-Il;Kim, Sung-Min;Cho, In-Young;Kim, Mi-Young;Son, Jong-Ho;Ryu, Jae-Jin;Kim, Kyeong-Hyeon;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.339-340
    • /
    • 2008
  • The Conventional PVA (patterned vertical alignment) mode showed characteristics of 8-domain using T-T type or C-C type. But these methods have disadvantages such as decreasing aspect ratio and transmittance. In order to resolve these problems, in this paper we have studied a new 8-domain method which is partially using the UV curable reactive mesogen (RM) that is a role in surface stabilization. The characteristic of off-axis color shift is decreased because the part of surface stabilized area is compensated to other area in a pixel. Consequently, the device shows improved color shift by 8-domain.

  • PDF

Diagnosis and Control of Machining States in Micro-Drilling for Productivity Enhancement (미세구멍 가공의 생산성 향상을 위한 상태식별 및 제어)

  • 정만실;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.117-129
    • /
    • 1998
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratio larger than 10) is recently having more attention in a wide spectrum of precision production industries. Alternative methods such as EDM. laser drilling, etc. can sometimes replace the mechanical micro-hole drilling but are not acceptable in PCB manufacture because of the inferior hole quality and accuracy. The major difficulties in micro-hole drilling are related to small signal to noise ratios, wandering motions of the inlet stage, high aspect ratios, high temperatures and so forth. Of all the difficulties. the most undesirable one is the increase of drilling force as the drill proceeds deeper into the hole. This is caused mainly from the chip effects. Peck-drilling is thus widely used for deep hole drilling despite that it suffers from low productivity. In the paper, a method of cutting force regulation is proposed to achieve continuous drilling. A PD and a sliding mode control algorithms were implemented through controlling the spindle rotating frequency. Experimental results show that the sliding mode control reduces the nominal cutting force and the variation of the cutting force better than the PD control. The advantages of the regulation, such as increase of drill life, fast stabilization of a wandering motion, and the precise positioning of the hole are verified in experiment.

  • PDF