• 제목/요약/키워드: Stability-Robustness

검색결과 566건 처리시간 0.033초

Robust Adaptive Control of a Nonholonomic Mobile Robot

  • Kim, M. S.;Lee, J. J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.5-8
    • /
    • 1999
  • The main stream of researches on the mobile robot is planning motions of the mobile robot under nonholonomic constraints while only considering kinematic model of a mobile robot. These researches, however, assume that there is some kind of dynamic controller which can produce perfectly the same velocity that is necessary for the kinematic controller. Moreover, there are little results about the problem of integrating the nonholonomic kinematic controller and the dynamic controller for a mobile robot. Also the literature on the robustness of the controller in the presence of uncertainties or external disturbances in the dynamical model of a mobile robot is very few. Thus, in this paper, the robust adaptive controller which can achieve velocity tracking while considering not only kinematic model but also dynamic model of the mobile robot is proposed. The stability of the dynamic system will be shown through the Lyapunov method.

  • PDF

Improvement on Sensorless Vector Control Performance of PMSM with Sliding Mode Observer

  • Wibowo, Wahyu Kunto;Jeong, Seok-Kwon;Jung, Young-Mi
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.129-136
    • /
    • 2014
  • This paper proposes improvement on sensorless vector control performance of a permanent magnet synchronous motor (PMSM) with sliding mode observer. An adaptive observer gain and second order cascade low-pass filter (LPF) were used to improve the estimation accuracy of the rotor position and speed. The adaptive observer gain was applied to suppress the chattering intensity and obtained by using the Lyapunov's stability criterion. The second order cascade LPF was designed for the system to escalate the filtering performance of the back-emf estimation. Furthermore, genetic algorithm was used to optimize the system PI controller's performance. Simulation results showed the effectiveness of the suggested improvement strategy. Moreover, the strategy was useful for the sensorless vector control of PMSM to operate on the low-speed area.

유압 굴삭기의 궤적 추종을 위한 강인 제어 (Robust Control of Trajectory Tracking for Hydraulic Excavator)

  • 최종환;김승수;양순용;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.22-29
    • /
    • 2004
  • This paper studies the coordinated trajectory control of an excavator as a kind of robotic manipulators driven by hydraulic actuators. Hydraulic robot system has many non-linearity in dynamics and kinematics, and strong coupling among joints(or hydraulic cylinders). This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system for parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

정합조건이 만족되지 않는 불확실한 다변수 계통에 대한 슬라이딩 모드 제어기의 설계 (Design of sliding mode controller for uncertain multivariable systems in the absence of matching conditions)

  • 천희영;박귀태;김동식;임성준;공진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.439-445
    • /
    • 1990
  • All models of dynamical systems invariably have some measure of uncertainties associated with some of their dynamics. The recent approaches to establish robustness of stabilizing feedback control against the possible uncertainties have a serious limitation, that is their applicability only to the systems that satisfy the matching conditions. Such conditions are rarely met in general applications. If a particular system satisfies the matching conditions, the addition of an actuator will destroy the satisfaction of such conditions. In this paper, we develop robust control algorithm for uncertain multivariable systems in which the matching conditions are not necessarily met. We empoly Lyapunov's second method to derive robust stabilizing controllers which guarantee asymptotic stability against prescribed uncertainties. The derivation consists of transforming the original uncertain system to controllable canonical form and constructing a constant switching surface by designing the closed-loop characteristics as a function of the uncertainties. Numerical examples are discussed as illustrations.

  • PDF

로보트 매니퓰레이터에 대한 비선형 제어 (Nonlinear control for robot manipulator)

  • 이종용;이승원;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.263-268
    • /
    • 1990
  • This paper deals with the manipulator with actuator described by equation D over bar(q) $q^{...}$ = u-p over bar (q, $q^{.}$, $q^{..}$) with a control input u. We imploy a simple method of control design which bas two stages. First, a global linearization is performed to yield a decoupled controllable linear system. Then a controller is designed for this linear system. We provide a rigorous analysis Of the effect of uncertain dynamics, which we study using robustness results In time domain based on a Lyapunav equation and the total stability theorem. I)sing this approach we simulate the performance of controller about a robotic manipulator with actuator.tor.r.

  • PDF

지연시간을 갖는 계통의 성능 향상을 위한 지식기반 전문가 제어기 설계 (Design of rule based expert controller for time delay systems)

  • 박귀태;이기상;김성호;박태홍;고응렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.117-121
    • /
    • 1990
  • The control process involving pure time delays presents a continuing challenge to the control system engineer. The nonlinear nature of the delay which can be introduced into the system make the use of conventional control algorithms a poor prospect. The Smith Predictor was developed to alleviate this problem. Unfortunately the quality of control achieved with the Smith Predictor is known to be sensitive to modelling errors. Only recently have researchers attempted to quantify the Smith Predictor controller's robustness to modelling errors. In several studies stability boundaries were plotted as functions of errors in parameters. But the research results address the question of performance of Smith Predictor controllers, In this paper, the Rule based Expert Systems for performance improvement of the Smith Predictor controller are developed.

  • PDF

분산형 기준모델 적응 제어기 구성에 관한 연구 (On the study of decentralized model reference adaptive controller design)

  • 장석주;김국헌;양흥석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.193-197
    • /
    • 1987
  • Decentralized model reference adaptive controller is used to control interconnected system. Influences caused by interactions between each subsystem are regarded as unmodeled dynamics or disturbances, thus decentralized adaptive controller is designed using MRAC algorithms which guarantees robustness. To expand the stability regions of over all system and to improve control performances, higher level controller is introduced to adjust the control factors such as filter band, size of deadzone or maximum norm of parameter. Local controllers for each subsystem are realized in real time and higher level controller has an ability of detecting the instability phenomena and adjusts the local controller by analysis of power spectrum or square sum of tracking errors.

  • PDF

Stabilization of Target Tracking with 3-axis Motion Compensation for Camera System on Flying Vehicle

  • Sun, Yanjie;Jeon, Dongwoon;Kim, Doo-Hyun
    • 대한임베디드공학회논문지
    • /
    • 제9권1호
    • /
    • pp.43-52
    • /
    • 2014
  • This paper presents a tracking system using images captured from a camera on a moving platform. A camera on an unmanned flying vehicle generally moves and shakes due to external factors such as wind and the ego-motion of the machine itself. This makes it difficult to track a target properly, and sometimes the target cannot be kept in view of the camera. To deal with this problem, we propose a new system for stable tracking of a target under such conditions. The tracking system includes target tracking and 3-axis camera motion compensation. At the same time, we consider the simulation of the motion of flying vehicles for efficient and safe testing. With 3-axis motion compensation, our experimental results show that robustness and stability are improved.

Robust control using Analog Adaptive Resonance Theory

  • 손준혁;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.93-95
    • /
    • 2006
  • In many control system applications, the system designed must not only satisfy the damping and accuracy specifications, but the control must also yield performance that is robust to external disturbance and parameter variations. We have shown that feedback in conventional control systems has the inherent ability of reducing the effects of external disturbance and parameter variations. Unfortunately, robustness with the conventional feedback configuration is achieved only with a high loop gain, which is normally detrimental to stability. The design of intelligent, autonomous machines to perform tasks that are dull, repetitive, hazardous, or that require skill, strength, or dexterity beyond the capability of humans is the ultimate goal of robotics research. This paper prove the robust control using Analog Adaptive Resonance Theorv(ART2) Algorithm about case study.

  • PDF

연료분사식 자동차엔진의 퍼지가변구조 제어시스템 (Fuzzy Variable Structure Control System for Fuel Injected Automotive Engines)

  • 남세규;유완석
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1813-1822
    • /
    • 1993
  • An algorithm of fuzzy variable structrue control is proposed to design a closed loop fuel-injection system for the emission control of automotive gasoline engines. Fuzzy control is combined with sliding control at the switching boundary layer to improve the chattering of the stoichiometric air to fuel ratio. Multi-staged fuzzy rules are introduced to improve the adaptiveness of control system for the various operating conditions of engines, and a simplified technique of fuzzy inference is also adopted to improve the computational efficiency based on nonfuzzy micro-processors. The proposed method provides an effective way of engine controller design due to its hybrid structure satisfying the requirements of robustness and stability. The great potential of the fuzzy variable structure control is shown through a hardware-testing with an Intel 80C186 processor for controller and a typical engine-only model on an AD-100 computer.