• 제목/요약/키워드: Stability provisions

검색결과 38건 처리시간 0.031초

Fuzzy logic based estimation of effective lengths of columns in partially braced multi-storey frames

  • Menon, Devdas
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.287-299
    • /
    • 2001
  • Columns in multi-storey frames are presently categorised as either braced or unbraced, usually by means of the stability index criterion, for estimating their effective length ratios by design aids such as 'alignment charts'. This procedure, however, ignores the transition in buckling behaviour between the braced condition and the unbraced one. Hence, this results in either an overestimation or an underestimation of effective length estimates of columns in frames that are in fact 'partially braced'. It is shown in this paper that the transitional behaviour is gradual, and can be approximately modelled by means of a 'fuzzy logic' based technique. The proposed technique is simple and intuitively agreeable. It fills the existing gap between the braced and unbraced conditions in present codal provisions.

Investigation of dynamic P-Δ effect on ductility factor

  • Han, Sang Whan;Kwon, Oh-Sung;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.249-266
    • /
    • 2001
  • Current seismic design provisions allow structures to deform into inelastic range during design level earthquakes since the chance to meet such event is quite rare. For this purpose, design base shear is defined in current seismic design provisions as the value of elastic seismic shear force divided by strength reduction factor, R (${\geq}1$). Strength reduction factor generally consists of four different factors, which can account for ductility capacity, overstrength, damping, and redundancy inherent in structures respectively. In this study, R factor is assumed to account for only the ductility rather than overstrength, damping, and redundancy. The R factor considering ductility is called "ductility factor" ($R_{\mu}$). This study proposes ductility factor with correction factor, C, which can account for dynamic P-${\Delta}$ effect. Correction factor, C is established as the functional form since it requires computational efforts and time for calculating this factor. From the statistical study using the results of nonlinear dynamic analysis for 40 earthquake ground motions (EQGM) it is shown that the dependence of C factor on structural period is weak, whereas C factor is strongly dependant on the change of ductility ratio and stability coefficient. To propose the functional form of C factor statistical study is carried out using 79,920 nonlinear dynamic analysis results for different combination of parameters and 40 EQGM.

Non-constant biaxial bending capacity assessment of CFST columns through interaction diagrams

  • Espinos, Ana;Albero, Vicente;Romero, Manuel L.;Mund, Maximilian;Meyer, Patrick;Schaumann, Peter
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.521-536
    • /
    • 2019
  • The mechanical response of concrete-filled steel tubular (CFST) columns subjected to pure compression or uniaxial bending was studied in depth over the last decades. However, the available research results on CFST columns under biaxial bending are still scarce and the lack of experimental tests for this loading situation is evident. At the same time, the design provisions in Eurocode 4 Part 1.1 for verifying the stability of CFST columns under biaxial bending make use of a simplistic interaction curve, which needs to be revised. This paper presents the outcome of a numerical investigation on slender CFST columns subjected to biaxial bending. Eccentricities differing in minor and major axis, as well as varying end moment ratios are considered in the numerical model. A parametric study is conducted for assessing the current design guidelines of EN1994-1-1. Different aspect ratios, member slenderness, reinforcement ratios and load eccentricities are studied, covering both constant and variable bending moment distribution. The numerical results are subsequently compared to the design provisions of EN1994-1- 1, showing that the current interaction equation results overly conservative. An alternative interaction equation is developed by the authors, leading to a more accurate yet conservative proposal.

Students' Online Fashion Studio Class Experience and Factors Affecting Their Class Satisfaction

  • Lee, Jungmin;Lee, MiYoung
    • 패션비즈니스
    • /
    • 제24권6호
    • /
    • pp.135-147
    • /
    • 2020
  • This study explored students' online fashion studio class experiences, and investigated the factors affecting their class satisfaction. An online survey of college students who were enrolled in online studio classes within apparel and fashion-related departments during the spring of 2020 was conducted in June 2020. Responses from a total of 213 participants were included in the final data. Respondents rated lecture clips as the most useful, followed by teacher demonstration and feedback, PowerPoint (PPT) supplements, and Q&As. Frequently mentioned areas of improvement were online platform stability and video quality. Many respondents also stated that more streamlined teacher-student communication channels, immediate and meticulous teacher feedback, the adoption of course contents developed specifically for an online environment, and provisions for equipment usage would be desirable. Student satisfaction of an online fashion design studio class was significantly affected by teaching presence, social presence, online learning system stability, perceived usefulness of teacher's demonstration, and affective response toward COVID-19. Students satisfaction of an online garment construction studio class was significantly affected by teaching and social presence, online learning system stability, and perceived usefulness of teacher's demonstration. Based on these findings, we recommend developing teaching contents and methods that allow students to feel included in class and establish an online system with various functions to enhance the sense of social connection that can enable two-way communication.

Calculation models and stability of composite foundation treated with compaction piles

  • Cheng, Xuansheng;Jing, Wei
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.929-946
    • /
    • 2017
  • Composite foundation treated with compaction piles can eliminate collapsibility and improve the bearing capacity of foundation in loess area. However, the large number of piles in the composite foundation leads to difficulties in the analysis of such type of engineering works. This paper proposes two simplified methods to quantify the stability of composite foundation treated with a large number of compaction piles. The first method is based on the principle of making the area replacement ratios of the simplified model as the same time as the practical engineering situation. Then, discrete piles arranged in a triangular shape can be simplified in the model where the annular piles and compacted soil are arranged alternately. The second method implements equivalent continuous treatment in the pile-soil area and makes the whole treated region equivalent to a type of composite material. Both methods have been verified using treated foundation of an oil storage tank. The results have shown that the differences in the settlement values obtained from the water filled test in the field and those calculated by the two simplified methods are negligible. Using stability analysis, the difference ratios of the static and dynamic safety factors of the composite foundation treated with compaction piles calculated by these two simplified methods are found to be 3.56% and 5.32%, respectively. At the same time, both static and dynamic safety factors are larger than the general safety factor, which should be greater than or equal to 2.0 according to the provisions in civil engineering. This indicates that after being treated with compaction piles, the bearing capacity of the composite foundation is effectively improved and the foundation has enough safety reserve.

Developing girder distribution factors in bridge analysis through B-WIM measurements: An empirical study

  • Widi Nugraha;Winarputro Adi Riyono;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • 제10권3호
    • /
    • pp.207-220
    • /
    • 2023
  • The safety of bridges are critical in our transportation infrastructure. Bridge design and analysis require complex structural analysis procedures to ensure their safety and stability. One common method is to calculate the maximum moment in the girders to determine the appropriate bridge section. Girder distribution factors (GDFs) provide a simpler approach for performing this analysis. A GDF is a ratio between the response of a single girder and the total response of all girders in the bridge. This paper explores the significance of GDFs in bridge analysis and design, including their importance in the evaluation of existing bridges. We utilized Bridge Weigh-in-motion (B-WIM) measurements of five simple supported girder bridge in Indonesia to develop a simple GDF provisions for the Indonesia's bridge design code. The B-WIM measurements enable us to know each girder strain as a response due to vehicle loading as the vehicle passes the bridge. The calculated GDF obtained from the B-WIM measurements were compared with the code-specified GDF and the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge design specification. Our study found that the code specified GDF was adequate or conservative compared to the GDF obtained from the B-WIM measurements. The proposed GDF equation correlates well with the AASHTO LRFD bridge design specification. Developing appropriate provisions for GDFs in Indonesian bridge design codes can provides a practical solution for designing girder bridges in Indonesia, ensuring safety while allowing for easier calculations and assessments based on B-WIM measurements.

신뢰성이론에 의한 말뚝기초의 안정해석 및 설계규준 (Reliability Based Stability Analysis and Design Criteria for pile Foundation)

  • 이증빈;김영인;박철수;이정식;신형우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.102-107
    • /
    • 1991
  • This study a reliability based design criteria for the Pile foundation, Which is common type of bridge founfation, and also proposes the theoretical bases limit state equations of stalbility analvsis of Pile foundation and the uncertainty measuring algorithms of each equation are also derived by MFOSM using the pile reations of displacement method, Terzaghi's bearing capacity formula, and chang's lateral load formula. The Level of uncertainties comesponding to these algorithms are proposed approprite values considering our actuality. It may be asserted that the proposed LRFD reliability based design criteria for the pile foundation may have to be incorporated in to the current Highway Bridge Design codes as a design provision corresponding to the USD(or LFD) provisions of the current Highway Bridge Design Code.

  • PDF

VVVF 직류전동차 유지보수 데이타 기반의 RAM 적용에 관한 연구 (The study about a RAM application of a VVVF direct subway maintenance data foundation)

  • 이도선;김은실;박수중
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.184-190
    • /
    • 2009
  • Recently, the concern for the reliability of railway is increasing, also the study about reliability is being processed at a good pace. However, in case of an existing railway operating it is true that the railway system is being operated without a clear RAM standard. There is not a clear RAM standard about product menual of a city railroad, and there are only basic provisions concerning traction motor which can be called a main equipment. In this paper, we calculated the availability and reliability of subway having MKBSF, MKBF, MTBF, MTTR analyzing accumulated maintenance data about a main equipment of a VVVF direct subway being operated in line #4. By watching the reliability grade of a VVVF subway being operated and manufactured within the country and being applied with the development of a city railway reflected by RAM menual when the new subway is manufactured, and with the basic data of RCM, we'd like to grope the methods which can be improved by operation stability of a city railway.

  • PDF

신뢰성(信賴性) 이론(理論)에 의한 R.C.옹벽(擁壁)의 안정해석(安定解析) 및 설계규준(設計規準) (Reliability Based Stability Analysis and Design Criteria for Reinforced Concrete Retaining Wall)

  • 조태송;조효남;전재명
    • 대한토목학회논문집
    • /
    • 제3권3호
    • /
    • pp.71-86
    • /
    • 1983
  • 현재(現在) WSD로 설계(設計)되고 있는 우리 나라 철근(鐵筋)콘크리트 옹벽구조물(擁壁構造物)에 있어서 가장 보편적으로 사용되고 있는 캔틸레버 옹벽(擁壁)의 안정해석(安定解析) 및 각부설계(各部設計)를 보다 합리적(合理的)이며 확률적(確率的)인 신뢰성(信賴性) 이론(理論)을 도입하여 신뢰성(信賴性) 모델에 따른 안정해석(安定解析) 및 각부설계(各部設計)에 대한 신뢰성(信賴性) 설계규준(設計規準)을 LRFD에 의거하여 제안(提案)하고, 또 안정해석(安定解析)의 공칭안전율(公稱安全率)에 대한 이론적(理論的)인 근거를 제시(提示)하는 것이 본(本) 연구(硏究)의 주요내용(主要內容)이다. 신뢰성(信賴性) 이론(理論)에 의해 안정해석(安定解析) 및 각부설계(各部設計)에 대한 한계상태방정식(限界狀態方程式)을 유도하고, Coulomb의 주동토압계수(主動土壓係數), Hansen의 지지력공식(支持力公式)을 사용하여 Cornell의 MFOSM에 의해 불확실량(不確實量) 산정(算定)의 알고리즘을 유도하였으며 그에 따른 불확실량수준(不確實量水準)은 우리 나라의 현실(現實)을 고려한 적절한 값으로 제안(提案)하였다. 현행(現行) R.C. 옹벽설계규준(擁壁設計規準)에 따라 Calibration 하므로서 목표신뢰성지수(目標信賴性指數)${\beta}_0$를 다음과 같이 선택하고(전도(轉倒): ${\beta}_0$=4.0, 골동(滑動): ${\beta}_0$=3.5, 지지력(支持力): ${\beta}_0$=3.0, 휨: ${\beta}_0$=3.0, 전단(剪斷): ${\beta}_0$=3.2), 이 ${\beta}_0$에 대응하는 하중(荷重) 및 저항계수(抵抗係數)를 산정(算定)하였으며, 안정해석(安定解析)에 대한 현행(現行) 철근(鐵筋)콘크리트 표준시방서(標準示方書)의 안전율(安全率)을 검토한 결과 다음과 같은 값이 적절하다는 것을 알았다(전도(轉倒): 1.8, 골동(滑動): 1.9, 지지력(支持力): 3.6). 또한 현행(現行) WSD R.C. 옹벽(擁壁)의 설계규준(設計規準)을 위해 신뢰성(信賴性)에 의한 공칭안전율(公稱安全率)과 허용응력(許容應力)을 제안(提案)하였다. 그리고 본(本) 연구(硏究)에서 제안(提案)하는 R.C. 옹벽(擁壁)의 LRFD 신뢰성(信賴性) 설계규준(設計規準)을 현행(現行) R.C. 표준시방서(標準示方書)의 설계규준(設計規準)에 대응(對應)하는 설계규준(設計規準)으로 도입함이 바람직하다는 사실을 확인할 수 있었다.

  • PDF

조경시공·관리에서 사다리 안전사고 예방을 위한 전도 안정성 평가 - 국내에서 사용되고 있는 삼각지지형 이동식 사다리를 대상으로 - (Evaluation of Overturning Stability for Preventing Safety Accidents Caused by Ladder Work in Landscape Construction and Management - For the Tripod Support Portable Ladders Used in Korea -)

  • 김은일;권윤구;이기열
    • 한국조경학회지
    • /
    • 제51권5호
    • /
    • pp.1-12
    • /
    • 2023
  • 본 연구는 조경시공 및 관리분야에서 수목관리, 전지 등과 같은 고소부위 작업을 위해 주로 사용하는 삼각지지형 이동식 사다리의 전도 안정성을 평가한 것이다. 산업현장에서 사용 빈도가 높은 이동식 사다리에 포함되는 삼각지지형 이동식 사다리는 작업 특성에 따라 바닥지지 형태가 일반적인 A형의 사면지지가 아닌 삼각지지 방식이고, 작업 높이도 이동식 사다리와 비교하여 2배 이상 높기 때문에 떨어짐과 함께 작업자의 안전을 위협하는 전도 발생 가능성이 매우 높다고 할 수 있다. 따라서, 국내에서 사용되고 있는 삼각지지형 이동식 사다리를 대상으로 관련 기준인 ANSI-ASC A14.7과 EN 131-Part 7에서 규정하고 있는 전도 안정성 평가를 기반으로 하여 작업 높이에 따른 전도모멘트와 저항모멘트를 계산할 수 있는 수식을 각각 유도하여 계산한 후, 이 값을 상호 비교하여 전도에 대한 안전율 및 전도 방향에 따른 안정성을 평가하였다. 각 기준에 따른 전도 안정성 평가 결과, EN 131-Part 7의 규정을 적용하면 후면방향 8단과 측면방향으로 6단 이상의 삼각지지형 이동식 사다리는 전도에 대해서 불안정한 것으로 평가되었으나, ANSI-ASC A14.7의 규정에 의하면 방향에 상관없이 모든 단수에서 전도에 대한 안정성을 확보하고 있는 것으로 평가되었다.