• Title/Summary/Keyword: Stability Chart

Search Result 89, Processing Time 0.023 seconds

Design of Expected Loss Control Chart Considering Economic Loss (경제적 손실을 고려한 기대손실 관리도의 설계)

  • Kim, Dong-Hyuk;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.56-62
    • /
    • 2013
  • Control chart is representative tool of Statistical Process Control (SPC). But, it is not given information about the economic loss that occurs when a product is produced characteristic value does not match the target value of the process. In order to manage the process, we should consider not only stability of the variation also produce products with a high degree of matching the target value that is most ideal quality characteristics. There is a need for process control in consideration of economic loss. In this paper, we design a new control chart using the quadratic loss function of Taguchi. And we demonstrate effectiveness of new control chart by compare its ARL with ${\overline{x}}-R$ control chart.

A Comparative Analysis on the Efficiency of Monitoring between EWMA and Shewhart Chart in Instrumental Process with Autocorrelation (자기상관이 있는 장치 공정에서 EWMA와 Shewhart 관리도와의 모니터링 효율성 비교 분석)

  • Cho, Jin-Hyung;Oh, Hyun-Seung;Lee, Sae-Jae;Jung, Su-Il;Lim, Taek;Baek, Seong-Seon;Kim, Byung-Keug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.118-125
    • /
    • 2012
  • When monitoring an instrumental process, one often collects a host of data such as characteristic signals sent by a sensor in short time intervals. Characteristic data of short time intervals tend to be autocorrelated. In the instrumental processes often the practice of adjusting the setting value simply based on the previous one, so-called 'adjacent point operation', becomes more critical, since in the short run the deviations are harder to detect and in the long run they have amplified consequences. Stochastic modelling using ARIMA or AR models are not readily usable here. Due to the difficulty of dealing with autocorrelated data conventional practice is resorting to choosing the time interval where autocorrelation is weak enough then to using I-MR control chart to judge the process stability. In the autocorrelated instrumental processes it appears that using the Shewhart chart and the time interval data where autocorrelation is relatively not existent turns out to be a rather convenient and very useful practice to determine the process stability. However in the autocorrelated instrumental processes we intend to show that one would presumably do better using the EWMA control chart rather than just using the Shewhart chart along with some arbitrarily intervalled data, since the former is more sensitive to shifts given appropriate weights.

Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

  • Mao, Huan;Yang, Hezhen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO). Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

Safety Evaluation of Mountain Slopes Considering the Effect of Forest Fire (산불의 영향을 고려한 산지사면의 안정성 평가)

  • Kim, Jong-Min;Chung, Bong-Hoon;Choi, Joon-Sung;Park, Duk-Keun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.57-64
    • /
    • 2004
  • Recent abnormal weather condition and accompanying increase in forest fire require more study on the effect of forest fire on the stability of mountain slopes. The aims of this paper are to investigate how destroy of trees caused by forest fire influences the stability of mountain slopes and to propose a safety evaluation method for mountain slopes considering the effect of forest fire, in order to minimize the expected damage due to forest fire. To accomplish this aim, the effects of forest fire on the stability of mountain slopes are analyzed in quantitative way, and a slope stability chart is proposed as a result.

Thresholds of Rainfall Duration and Intensity for Predicting Abrupt Landslide Occurrence (돌발 산사태 예·경보를 위한 강우기준 설정 연구)

  • Kim, Seong-Pil;Park, Jae-Sung;Bae, Seung-Jong;Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.53-58
    • /
    • 2014
  • The objective of this study is to suggest rainfall threshold for landslide forecasting and warning. For this study, we chose the research area where landslide have occurred. And we performed infiltration-stability analysis with rainfall intensity-duration. As the results of this study, slope stability variation chart with rainfall intensity-duration are established. This kind of chart is believed to be able to be used for forecasting and warning the landslide caused by rainfall.

Slope Stability Charts of Soil Nailing Method for Slope Diaster Prevention (사면재해 방지를 위한 Soil Nailing 공법의 사면안정 도표)

  • Kim, Ji-Seong;Ku, Mi-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.457-464
    • /
    • 2016
  • The analysis for stability of slope reinforced with soil nails need professional knowledge and skilled technology for program. So we spend a lot of money and time. In this study, we try to save it. After we analyzed the stability of reinforced slope with MIDAS GTS using shear strength reduction technique, we made charts by result. Charts created in the stydy can be used rapidly in slope disaster prevention. We try to analyze stability of slopes when we changed nail spacing, nail angle, slope type, properties of soil. We obtained relationship as follows; 1) The safety factor appears effectively when the nail angle is $10{\sim}20^{\circ}$. 2) The safety factor appears effectively when the nail spacing is 0.8~1.2m. 3) The error of Singh's and suggested chart are 3.45, 8.65, 4.35% when the slope are 1:0.5, 1:1, 1:2.

Determination of the Effective Buckling Length of Rahmen (라멘구조물의 유효좌굴장 결정)

  • 경용수;진만식;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.185-192
    • /
    • 2004
  • The goal of this paper is to determine the accurate effective length factor(K factor) for buckling design of plane frames and to point out the practical limitations of the alignment chart which provides the approximate effective length factor. At present, the most general method to obtain K factors is to use the alignment chart which is given in the form of nomograph in LRFD-AISC specification commentaries. However it should be realized that various simplifications and assumptions were used in obtaining the alignment chart. Therefore, a simple but effective method to obtain accurate K-factors through the stability analysis of plane frames is developed in this study. To demonstrate the accuracy and effectiveness of the present scheme, K-factors by system buckling analysis of frames are calculated and compared with those calculated by the alignment chart.

  • PDF

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

A Development of Expected Loss Control Chart Using Reflected Normal Loss Function (역정규 손실함수를 이용한 기대손실 관리도의 개발)

  • Kim, Dong-Hyuk;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.37-45
    • /
    • 2016
  • Control chart is representative tools of statistical process control (SPC). It is a graph that plotting the characteristic values from the process. It has two steps (or Phase). First step is a procedure for finding a process parameters. It is called Phase I. This step is to find the process parameters by using data obtained from in-controlled process. It is a step that the standard value was not determined. Another step is monitoring process by already known process parameters from Phase I. It is called Phase II. These control chart is the process quality characteristic value for management, which is plotted dot whether the existence within the control limit or not. But, this is not given information about the economic loss that occurs when a product characteristic value does not match the target value. In order to meet the customer needs, company not only consider stability of the process variation but also produce the product that is meet the target value. Taguchi's quadratic loss function is include information about economic loss that occurred by the mismatch the target value. However, Taguchi's quadratic loss function is very simple quadratic curve. It is difficult to realistically reflect the increased amount of loss that due to a deviation from the target value. Also, it can be well explained by only on condition that the normal process. Spiring proposed an alternative loss function that called reflected normal loss function (RNLF). In this paper, we design a new control chart for overcome these disadvantage by using the Spiring's RNLF. And we demonstrate effectiveness of new control chart by comparing its average run length (ARL) with ${\bar{x}}-R$ control chart and expected loss control chart (ELCC).

Stability of rectangular tunnel in improved soil surrounded by soft clay

  • Siddharth Pandey;Akanksha Tyagi
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.491-505
    • /
    • 2023
  • The practical usage of underground space and demand for vehicular tunnels necessitate the construction of non-circular wide rectangular tunnels. However, constructing large tunnels in soft clayey soil conditions with no ground improvement can lead to excessive ground deformations and collapse. In recent years, in situ ground improvement techniques such as jet grouting and deep cement mixing are often utilized to perform cement-stabilisation around the tunnel boundary to prevent large deformations and failure. This paper discusses the stability characteristics and failure behaviour of a wide rectangular tunnel in cement-treated soft clays. First, the plane strain finite element model is developed and validated with the results of centrifuge model tests available in the past literature. The critical tunnel support pressures computed from the numerical study are found to be in good agreement with those of centrifuge model tests. The influence of varying strength and thickness of improved soil surround, and cover depth are studied on the stability and failure modes of a rectangular tunnel. It is observed that the failure behaviour of the tunnel in improved soil surround depends on the ratio of the strength of improved soil surround to the strength of surrounding soil, i.e., qui/qus, rather than just qui. For low qui/qus ratios,the stability increases with the cover; however, for the high strength improved soil surrounds with qui >> qus, the stability decreases with the cover. The failure chart, modified stability equation, and stability chart are also proposed as preliminary design guidelines for constructing rectangular tunnels in the improved soil surrounded by soft clays.