Nanosized hollow silica was prepared by $St{\ddot{o}}ber$ method in the presence of aluminum isopropoxide. The mixture of polyelectrolytes such as poly(sodium 4-styrene sulfonate)(PSS) and polyacrylic acid(PAA) were used as templates. Tetraethylorthosilicate(TEOS) and aluminum isopropoxide were used as precursors for silica and alumina, respectively. The function of aluminum isopropoxide is to increase the porosity of silica shell. The characterizations of hollow silica were examined by TEM(transmission electron microscopy), TGA(thermogravimetric analysis), BET(Brunauer Emmett Teller), Energy-dispersive X-ray spectroscopy(EDS), and FT-IR spectrum. It was found that the shell thickness of hollow silica was around 8 nm and the core diameter was around 20 nm by TEM.
유기 염료가 도핑 된 실리카 나노입자는 바이오 라벨링, 바이오 이미징 및 바이오 센싱에 사용되고 있는 유망한 나노소재이다. 일반적으로 형광 실리카 나노입자는 수정된 스토버 방법($St{\ddot{o}}ber$ Method)으로 합성된다. 본 연구에서는 다양한 크기를 갖는 염료가 첨가되지 않은 형광 실리카 나노입자를 수정된 스토버 합성법인 졸겔 공정으로 합성하였다. 졸겔 공정 중에 기능성 물질인 APTES를 첨가제로 첨가하였다. 졸겔 공정으로 합성된 실리카 나노입자는 $400^{\circ}C$에서 2시간 동안 하소되었다. 합성된 실리카 나노입자의 표면형상과 크기를 전계방출 주사전자현미경으로 조사하였고, 합성된 실리카 나노입자의 형광 특성은 파장 365 nm의 자외선 램프를 조사하여 확인하였다. 또한 합성된 실리카 나노입자의 광발광 (PL) 특성을 형광 분석 형광법으로 조사하였다. 그 결과 합성된 실리카 나노입자는 입자의 크기와 무관하게 모두 청색 형광 특성을 갖는 것으로 확인되었다. 특히, 실리카 나노입자의 크기가 증가할수록 PL 강도는 감소하였다. 염료가 첨가되지 않은 실리카 나노입자의 청색 형광 특성은 APTES 층의 $NH_2$ 기능기와 실리카 매트릭스 뼈대 내부의 산소관련 결함과의 결합에 기인하는 것으로 추정된다.
이차전지 음극소재인 실리콘의 부피팽창을 개선하기 위하여 hollow silicon/carbon (H-Si/C) 복합체의 특성을 조사하였다. $St{\ddot{o}}ber$법을 통해 합성한 $SiO_2$에 $NaBH_4$를 첨가해 hollow 형태의 $SiO_2\;(H-SiO_2)$를 제조한 후, 마그네슘 열 환원 반응과 phenolic 수지(resin)를 첨가한 후 탄화과정을 거쳐서 H-Si/C 복합체를 합성하였다. 제조된 H-Si/C 합성물은 XRD, SEM, BET, EDX, TGA를 통해 특성을 분석하였다. 음극소재의 용량과 사이클 안정성을 향상시키기 위해서, $NaBH_4$ 첨가량에 따라 합성된 H-Si/C 복합체의 전기화학적 특성을 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 조사하였다. H-Si/C 음극활물질과 $LiPF_6$ (EC : DMC : EMC = 1 : 1 : 1 vol%) 전해액을 사용하여 제조한 코인셀은 $SiO_2:NaBH_4=1:1$일 때 1459 mAh/g의 향상된 용량을 나타내었으며, 사이클 성능 또한 두 번째 사이클 이후 40번째 사이클까지 매우 우수한 안정성을 나타냄을 확인하였다.
스토버 방법(St$\ddot{o}$ber method)을 이용하여 균일한 크기의 실리카 나노비드(silica nanobead)를 합성하였으며 초음파(sonication) 방법을 이용하여 분자 처리된 유리 기판 위에 실리카 나노비드를 단층(monolayer)으로 정렬시켰다. 유리기판위에 처리된 분자층은 3-chloropropyltrimethoxysilane (CP-TMS)와 polyethyleneimine (PEI)가 사용되어졌고 합성된 나노비드는 톨루엔에 분산시킨 뒤 초음파방법으로 유기기판위에 부착되어졌다. 수행되어진 초음파방법은 분자 처리된 유리 기판을 단독으로 사용하는 SO (sonication without stacking) 모드와 두 개의 깨끗한 유리 기판 사이에 분자 처리된 유리 기판을 삽입하여 사용하는 SS (sonnication with stacking) 모드로 구분지어 적용되었으며, 기판위에 정렬된 실리카 나노비드의 무게는 마이크로 저울(microbalance)을 이용하여 측정한 뒤 점유도(degree of coverage, DOC)를 계산하였다. 결론적으로, SO 모드에서는 DOC가 단기간에 가파르게 상승하여 140% 이상까지 도달했지만 다층(multi-layer)구조가 많이 발견되는 특징이 있었고, SS 모드에서는 DOC가 평형에 도달하는 시간이 SO 모드보다 느리게 진행되었지만 보다 밀집(close-packing)된 형태의 단층구조가 관측되었다.
본 연구에서는 리튬이온 전지용 실리콘 음극소재의 사이클 안정성 및 율속 특성 향상을 위해 다공성 실리콘/탄소 복합소재의 전기화학적 특성을 조사하였다. 나노 실리카 제조는 스토버 방법을 사용하고 교반 속도, 교반 온도 및 $NH_3$/TEOS 비율을 조절 하여 100~500 nm 크기의 구형 실리카를 합성하였다. 구형 나노 실리카의 마그네슘 열환원과 산처리 과정을 통해 다공성 실리콘을 얻고, 제조된 다공성 실리콘에 Phenolic resin을 탄소전구체로 사용하여 최종적으로 다공성 실리콘/탄소 활물질을 합성하였다. 또한 $LiPF_6$ (EC:DMC:EMC=1:1:1 vol%) 전해액에서 다공성 실리콘/탄소 음극소재의 충 방전, 순환전압 전류, 임피던스 테스트 등의 전기화학적 특성을 조사 하였다. 다공성 실리콘/탄소 복합소재의 음극활물질로서 코인 전지의 성능을 조사한 결과 초기용량 및 40사이클 용량 보존율은 각각 2,006 mAh/g, 55.4%를 나타내었다.
$Ag@SiO_2@SiO_2$(FITC) nanocomposites were prepared by the simple polyol process and St$\ddot{o}$ber method. Fluorescence enhancement of fluorescein moiety (fluorescein isothiocyanate, FITC) was investigated in the presence of silver nanoparticles in $Ag@SiO_2@SiO_2$(FITC) system with varying thickness (X nm) of first silica shell. Maximum enhancement factor of 4.3 fold was achieved in $Ag@SiO_2@SiO_2$(FITC) structure with the first silica shell thickness of 8 nm and the average separation distance of 11 nm between the surface of silver nanoparticle and fluorescein moiety. The enhancement is believed to be originated from increased excitation rate of fluorescein moiety due to concentrated local electromagnetic field which was improved by interaction of light with silver nanoparticles.
A preparation method for gadolinium compound (GdC) nanoparticles coated with silica ($GdC/SiO_2$) is proposed. GdC nanoparticles were prepared with a homogeneous precipitation method at $80^{\circ}C$ using $1.0{\times}10^{-3}$ M $Gd(NO_3)_3$, 0.5 M urea and $0-3.0{\times}10^{-4}$ M ethylenediarinnetetraacetic acid disodium salt dihydrate (ETDA) in water. As a result of preparation at various EDTA concentrations, GdC nanoparticles with a size as small as $40.5{\pm}6.2$ nm, which were colloidally stable, were prepared at an EDTA concentration of $2.0{\times}10^{-4}$ M. Silica-coating of the GdC nanoparticles was performed by a St$\ddot{o}$ber method at $35^{\circ}C$ using $1.0-10.0{\times}10^{-3}$ M tetraethylorthosilicate (TEOS), 11 M $H_2O$ and $1.5{\times}10^{-3}$ M NaOH in ethanol in the presence of $1.0{\times}10^{-3}$ M GdC nanoparticles. Performance of preparation at various TEOS concentrations resulted in production of $GdC/SiO_2$ particles with an average size of $106.1{\pm}11.2$ nm at a TEOS concentration of $5.0{\times}10^{-3}$ M. The gadolinium (Gd) concentration of $1.0{\times}10^{-3}$ M in the as-prepared $GdC/SiO_2$ particle colloid solution was increased up to a Gd concentration of 0.2 M by concentrating with centrifugation. The core-shell structure of $GdC/SiO_2$ particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated $GdC/SiO_2$ colloid solution showed images of X-ray and magnetic resonance with contrast as high as commercial Gd complex contrast agents.
Kim, Tae Gyun;An, Gye Seok;Han, Jin Soon;Hur, Jae Uk;Park, Bong Geun;Choi, Sung-Churl
한국세라믹학회지
/
제54권1호
/
pp.49-54
/
2017
In this study, based on hydrolysis and condensation via $St{\ddot{o}}ber$ process of sol-gel method, synthesis of mono-dispersed silica nanoparticles was carried out with hydrophilic solvent. This operation was expected to be a more simplified process than that with organic solvent. Based on the sol-gel method, which involves simply controlling the particle size, the particle size of the synthesized silica specimens were ranged from 30 to 300 nm by controlling the composition of tetraethylorthosilicate (TEOS), DI water and ammonia solution, and by varying the stirring speeds while maintaining a fixed amount of ethanol. Increasing the content of DI water and decreasing the content of ammonia caused the particle size to decrease, while controlling the stirring speed at a high level of RPMs enabled a decrease of the particle size. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were utilized to investigate the success factors for synthesizing process; Field emission scanning electron microscopy (FE-SEM) was used to study the effects of the size and morphology of the synthesized particles. To analyze the dispersion properties, zeta potential and particle size distribution (PSD) analyses were utilized.
본 연구에서는 리튬이온전지 실리콘 음극소재의 사이클 안정성 향상을 위해 실리콘/탄소 음극소재의 전기화학적 특성을 조사하였다. Tetraethyl orthosilicate (TEOS) 로부터 스토버법 및 마그네슘 열 환원법을 통하여 다공성 실리콘을 제조하고, 제조된 다공성 실리콘과 피치의 질량비에 따라 실리콘/탄소 음극소재를 제조하였다. 실리콘/탄소 음극소재의 물리적 특성은 XRD와 TGA를 통해 분석하였다. 1.0 M $LiPF_6$ (EC : DEC = 1 : 1 vol%) 전해액에서 실리콘/탄소 음극소재의 충 방전 사이클, 율속, 순환전압전류, 임피던스 테스트를 통해 전기화학적 특성을 조사하였다. 제조된 실리콘/탄소 음극소재 실리콘 : 탄소 = 5 : 95 일때 453 mAh/g의 향상된 용량을 나타내었으며, 사이클 성능 또한 두 번째 사이클 이후 30 사이클까지 매우 우수한 사이클 안정성을 나타냄을 확인하였다.
나노과학과 나노기술의 발전에 따라 선택적 패턴 성장을 위한 기술이 주목을 받고 있다. 실리카(Silica) 나노입자는 바이오 라벨링, 바이오 이미징 및 바이오 센싱에 사용되고 있는 유망한 나노소재이다. 본 연구에서는 실리카 나노입자를 수정된 스토버 방법(Stöber Method)인 졸겔(Sol-Gel) 공정으로 합성하였다. 또한 기판의 표면을 미세접촉프린팅 기술로 발수 처리하여 실리카 나노입자를 선택적으로 패턴 성장시켰다. 합성된 실리카 나노입자의 크기와 선택적으로 패턴 성장된 실리카 나노입자의 표면형상을 전계방출 주사전자현미경(Field Emission Scanning Electron Microscopy, FE-SEM)으로 조사하였고, 기판의 표면 기능화에 따른 기판의 접촉각 특성을 조사하였다. 그 결과 OTS 용액으로 발수 처리된 기판에서는 실리카 나노입자를 스핀 코팅하였을 때, 실리카 나노입자를 관찰할 수 없었으나, KOH 용액으로 친수 처리된 기판에서는 실리카 나노입자가 잘 코팅되는 것을 확인하였다. 또한 미세접촉프린팅 기술로 발수 처리한 기판영역 외에서만 실리카 나노입자가 선택적으로 패턴 성장하는 것을 FE-SEM으로 확인하였다. 이러한 실리카 나노입자의 패턴성장 특성을 염료가 도핑 된 실리카 나노입자에 적용한다면, 실리카 나노입자의 패턴 성장 기술은 바이오 이미징 및 바이오 센싱 분야에 유용하게 활용될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.