• 제목/요약/키워드: Squares

검색결과 3,103건 처리시간 0.038초

민감도를 이용한 효율적인 반응표면모델생성 (Efficient Response Surface Modeling using Sensitivity)

  • 왕세명;김좌일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1882-1887
    • /
    • 2003
  • The response surface method (RSM) became one of famous meta modeling techniques, however its approximation errors give designers several restrictions. Classical RSM uses the least squares method (LSM) to find the best fitting approximation models from the all given data. This paper discusses how to construct RSM efficiently and accurately using moving least squares method (MLSM) with sensitivity information. In this method, several parameters should be determined during the construction of RSM. Parametric study and optimization for these parameters are performed. Several difficulties during approximation processes are described and numerical examples are demonstrated to verify the efficiency of this method.

  • PDF

Hybrid Linear Analysis Based on the Net Analyte Signal in Spectral Response with Orthogonal Signal Correction

  • Park, Kwang-Su;Jun, Chi-Hyuck
    • Near Infrared Analysis
    • /
    • 제1권2호
    • /
    • pp.1-8
    • /
    • 2000
  • Using the net analyte signal, hybrid linear analysis was proposed to predict chemical concentration. In this paper, we select a sample from training set and apply orthogonal signal correction to obtain an improved pseudo unit spectrum for hybrid least analysis. using the mean spectrum of a calibration training set, we first show the calibration by hybrid least analysis is effective to the prediction of not only chemical concentrations but also physical property variables. Then, a pseudo unit spectrum from a training set is also tested with and without orthogonal signal correction. We use two data sets, one including five chemical concentrations and the other including ten physical property variables, to compare the performance of partial least squares and modified hybrid least analysis calibration methods. The results show that the hybrid least analysis with a selected training spectrum instead of well-measured pure spectrum still gives good performances, which is a little better than partial least squares.

하이브리드 고속 영상 복원 방식 (Iterative Adaptive Hybrid Image Restoration for Fast Convergence)

  • 고결;홍민철
    • 한국통신학회논문지
    • /
    • 제35권9C호
    • /
    • pp.743-747
    • /
    • 2010
  • 본 논문은 빠른 연산(수렴)을 위한 적응 반복 하이브리드 영상 복원 알고리즘을 제안한다. 공간 영역의 국부제약 정보 설정을 위해 국부 영역의 분산, 평균, 국부 최대값을 이용하였다. 반복 기법을 이용하여 매 반복 해에서 얻어진 복원 영상으로부터 상기 제약 정보를 설정하고, 국부 완화도 결정을 위해 사용된다. 제안된 방식은 일반적인 RCLS(Regularized Constrained Least Squares) 방식에 비해 빠른 수렴속도와 더 좋은 성능을 얻을 수 있다.

WorldView-2 pan-sharpening by minimization of spectral distortion with least squares

  • Choi, Myung-Jin
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.353-357
    • /
    • 2011
  • Although the intensity-hue-saturation (IHS) method for pan-sharpening has a spectral distortion problem, it is a popular method in the remote sensing community and has been used as a standard procedure in many commercial packages due to its fast computing and easy implementation. Recently, IHS-like approaches have tried to overcome the spectral distortion problem inherited from the IHS method itself and yielded a good result. In this paper, a similar IHS-like method with least squares for WorldView-2 pan-sharpening is presented. In particular, unlike the previous methods with three or four-band multispectral images for pan-sharpening, six bands of WorldView-2 multispectral image located within the range of panchromatic spectral radiance responses are considered in order to reduce the spectral distortion during the merging process. As a result, the new approach provides a satisfactory result, both visually and quantitatively. Furthermore, this shows great value in spectral fidelity of WorldView-2 eight-band multispectral imagery.

Finite-Sample, Small-Dispersion Asymptotic Optimality of the Non-Linear Least Squares Estimator

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제24권2호
    • /
    • pp.303-312
    • /
    • 1995
  • We consider the following type of general semi-parametric non-linear regression model : $y_i = f_i(\theta) + \epsilon_i, i=1, \cdots, n$ where ${f_i(\cdot)}$ represents the set of non-linear functions of the unknown parameter vector $\theta' = (\theta_1, \cdots, \theta_p)$ and ${\epsilon_i}$ represents the set of measurement errors with unknown distribution. Under suitable finite-sample, small-dispersion asymptotic framework, we derive a general lower bound for the asymptotic mean squared error (AMSE) matrix of the Gauss-consistent estimator of $\theta$. We then prove the fundamental result that the general non-linear least squares estimator (NLSE) is an optimal estimator within the class of all regular Gauss-consistent estimators irrespective of the type of the distribution of the measurement errors.

  • PDF

Estimation of Ridge Regression Under the Integrate Mean Square Error Cirterion

  • Yong B. Lim;Park, Chi H.;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • 제9권1호
    • /
    • pp.61-77
    • /
    • 1980
  • In response surface experiments, a polynomial model is often used to fit the response surface by the method of least squares. However, if the vectors of predictor variables are multicollinear, least squares estimates of the regression parameters have a high probability of being unsatisfactory. Hoerland Kennard have demonstrated that these undesirable effects of multicollinearity can be reduced by using "ridge" estimates in place of the least squares estimates. Ridge regrssion theory in literature has been mainly concerned with selection of k for the first order polynomial regression model and the precision of $\hat{\beta}(k)$, the ridge estimator of regression parameters. The problem considered in this paper is that of selecting k of ridge regression for a given polynomial regression model with an arbitrary order. A criterion is proposed for selection of k in the context of integrated mean square error of fitted responses, and illustrated with an example. Also, a type of admissibility condition is established and proved for the propose criterion.criterion.

  • PDF

Variance components for two-way nested design data

  • Choi, Jaesung
    • Communications for Statistical Applications and Methods
    • /
    • 제25권3호
    • /
    • pp.275-282
    • /
    • 2018
  • This paper discusses the use of projections for the sums of squares in the analyses of variance for two-way nested design data. The model for this data is assumed to only have random effects. Two different sizes of experimental units are required for a given experimental situation, since nesting is assumed to occur both in the treatment structure and in the design structure. So, variance components are coming from the sources of random effects of treatment factors and error terms in different sizes of experimental units. The model for this type of experimental situation is a random effects model with more than one error terms and therefore estimation of variance components are concerned. A projection method is used for the calculation of sums of squares due to random components. Squared distances of projections instead of using the usual reductions in sums of squares that show how to use projections to estimate the variance components associated with the random components in the assumed model. Expectations of quadratic forms are obtained by the Hartley's synthesis as a means of calculation.

DEVELOPMENT OF THE HANSEL-SPITTEL CONSTITUTIVE MODEL GAZED FROM A PROBABILISTIC PERSPECTIVE

  • LEE, KYUNGHOON;KIM, JI HOON;KANG, BEOM-SOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권3호
    • /
    • pp.155-165
    • /
    • 2017
  • The Hansel-Spittel constitutive model requires a total of nine parameters for flow stress prediction. Typically, the parameters are estimated by least squares methods for given tensile test measurements from a deterministic perspective. In this research we took a different approach, a probabilistic viewpoint, to see through the development of the Hansel-Spittel constitutive model. This perspective change showed that deterministic least squares methods are closely related to statistical maximum likelihood methods via Gaussian noise assumption. More intriguingly, this perspective shift revealed that the Hansel-Spittel constitutive model may leave out deterministic trends in residuals despite nearly perfect agreement with measurements. With tensile test measurements of AA1070 aluminum alloy, we demonstrated this deficiency of the Hansel-Spittel constitutive model, suggesting room for improvement.

The Identification Of Multiple Outliers

  • Park, Jin-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권2호
    • /
    • pp.201-215
    • /
    • 2000
  • The classical method for regression analysis is the least squares method. However, if the data contain significant outliers, the least squares estimator can be broken down by outliers. To remedy this problem, the robust methods are important complement to the least squares method. Robust methods down weighs or completely ignore the outliers. This is not always best because the outliers can contain some very important information about the population. If they can be detected, the outliers can be further inspected and appropriate action can be taken based on the results. In this paper, I propose a sequential outlier test to identify outliers. It is based on the nonrobust estimate and the robust estimate of scatter of a robust regression residuals and is applied in forward procedure, removing the most extreme data at each step, until the test fails to detect outliers. Unlike other forward procedures, the present one is unaffected by swamping or masking effects because the statistics is based on the robust regression residuals. I show the asymptotic distribution of the test statistics and apply the test to several real data and simulated data for the test to be shown to perform fairly well.

  • PDF

퍼지 최소 자승 선형회귀분석 알고리즘을 이용한 특수일 전력수요예측 (Load Forecasting for Holidays Using a Fuzzy Least Squares Linear Regression Algorithm)

  • 송경빈;구본석;백영식
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권4호
    • /
    • pp.233-237
    • /
    • 2003
  • An accurate load forecasting is essential for economics and stability power system operation. Due to high relationship between the electric power load and the electric power price, the participants of the competitive power market are very interested in load forecasting. The percentage errors of load forecasting for holidays is relatively large. In order to improve the accuarcy of load forecasting for holidays, this paper proposed load forecasting method for holidays using a fuzzy least squares linear regression algorithm. The proposed algorithm is tested for load forecasting for holidays in 1996, 1997, and 2000. The test results show that the proposed algorithm is better than the algorithm using fuzzy linear regression.