• Title/Summary/Keyword: Squares

Search Result 3,103, Processing Time 0.034 seconds

Motion analysis within non-rigid body objects in satellite images using least squares matching

  • Hasanlou M.;Saradjian M.R.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.47-51
    • /
    • 2005
  • Using satellite images, an optimal solution to water motion has been presented in this study. Since temperature patterns are suitable tracers in water motion, Sea Surface Temperature (SST) images of Caspian Sea taken by MODIS sensor on board Terra satellite have been used in this study. Two daily SST images with 24 hours time interval are used as input data. Computation of templates correspondence between pairs of images is crucial within motion algorithms using non-rigid body objects. Image matching methods have been applied to estimate water body motion within the two SST images. The least squares matching technique, as a flexible technique for most data matching problems, offers an optimal spatial solution for the motion estimation. The algorithm allows for simultaneous local radiometric correction and local geometrical image orientation estimation. Actually, the correspondence between the two image templates is modeled both geometrically and radiometrically. Geometric component of the model includes six geometric transformation parameters and radiometric component of the model includes two radiometric transformation parameters. Using the algorithm, the parameters are automatically corrected, optimized and assessed iteratively by the least squares algorithm. The method used in this study, has presented more efficient and robust solution compared to the traditional motion estimation schemes.

  • PDF

Type I Analysis by Projections (사영에 의한 제1종 분석)

  • Choi, Jae-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.373-381
    • /
    • 2011
  • This paper discusses how to get the sums of squares due to treatment factors when Type I Analysis is used by projections for the analysis of data under the assumption of a two-way ANOVA model. The suggested method does not need to calculate the residual sums of squares for the calculation of sums of squares. There-fore, the calculation is easier and faster than classical ANOVA methods. It also discusses how eigenvectors and eigenvalues of the projection matrices can be used to get the calculation of sums of squares. An example is given to illustrate the calculation procedure by projections for unbalanced data.

A new classification method using penalized partial least squares (벌점 부분최소자승법을 이용한 분류방법)

  • Kim, Yun-Dae;Jun, Chi-Hyuck;Lee, Hye-Seon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.931-940
    • /
    • 2011
  • Classification is to generate a rule of classifying objects into several categories based on the learning sample. Good classification model should classify new objects with low misclassification error. Many types of classification methods have been developed including logistic regression, discriminant analysis and tree. This paper presents a new classification method using penalized partial least squares. Penalized partial least squares can make the model more robust and remedy multicollinearity problem. This paper compares the proposed method with logistic regression and PCA based discriminant analysis by some real and artificial data. It is concluded that the new method has better power as compared with other methods.

Analysis of market share attraction data using LS-SVM (최소제곱 서포트벡터기계를 이용한 시장점유율 자료 분석)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.879-886
    • /
    • 2009
  • The purpose of this article is to present the application of Least Squares Support Vector Machine in analyzing the existing structure of brand. We estimate the parameters of the Market Share Attraction Model using a non-parametric technique for function estimation called Least Squares Support Vector Machine, which allows us to perform even nonlinear regression by constructing a linear regression function in a high dimensional feature space. Estimation by Least Squares Support Vector Machine technique makes it a good candidate for solving the Market Share Attraction Model. To illustrate the performance of the proposed method, we use the car sales data in South Korea's car market.

  • PDF

Approximated Constrained Least Squares Filter for Real-Time Directionally Adaptive Image Restoration (제약적 최소 제곱 필터의 근사화를 이용한 실시간 방향 적응적 영상복원)

  • Cho, Changhun;Jeon, Jaehwan;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.150-158
    • /
    • 2013
  • In this paper we present approximated constrained least squares filter for real-time directionally adaptive image restoration. The proposed method makes a hardware implementation easier for real-time image restoration because of reducing the filter size. Furthermore, for directional adaptive image restoration, this paper estimates the local orientation by analyzing the covariance matrix and applies to approximated constrained least squares filter. Experimental results show that the proposed method is sharper and less artifacts than existing methods.

Iterative Least-Squares Method for Velocity Stack Inversion - Part A: IRLS method (속도중합역산을 위한 반복적 최소자승법 - Part A: IRLS 방법)

  • Ji Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.163-169
    • /
    • 2005
  • Recently, the velocity stack domain is having an attention as a very useful domain for various processing in seismic data processing. In order to be used in many applications, the velocity stack should be obtained through an inversion method and the used inversion should have properties like the robustness to noise and the parsimony of velocity stack result. Iteratively Reweighted Least-Squares (IRLS) method is the one of the inversion methods that have such properties. This paper describes the theoretical background, implementation of the method, and examines the characteristics and limits of the IRLS method.

A Study on the Improvement of the Accuracy for the Least-Squares Method Using Orthogonal Function (직교함수를 이용한 최소자승법의 정밀도 향상에 관한 연구)

  • Cho, Won Cheol;Lee, Jae Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.43-52
    • /
    • 1986
  • With increasing of computer use, a least squares method is now widely used in the regression analysis of various data. Unreliable results of regression coefficients due to the floating point of computer and problems of ordinary least squares method are described in detail. To improve these problems, a least squares method using orthogonal function is developed. Also, Comparison and analysis are performed through an example of numerical test, and re-orthogonalization method is used to increase the accuracy. As an example of application, the optimum order of AR process for the time series of monthly flow at the Pyungchang station is determined using Akaike's FPE(Final Prediction Error) which decides optimum degree of AR process. The result shows the AR(2) process is optimum to the series at the station.

  • PDF

A Study on the Adjustment of Precise Leveling Nets by the Method of Dynamic Least Squares (동적최소(動的最小)제곱법(法)에 의한 정밀수준강(精密水準綱)의 조정(調整))

  • Lee, Kye Hak;Jang, Ji Won;Kang, Hee Bog;Sung, Soo Lyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.177-184
    • /
    • 1988
  • The method of least squares has been applied to the static data, but it was not applications for the processing of observed values accompaning real-time variation. In this paper, having been considered all observations to be the function of time, leveling nets were analized dynamically by introducing the concept of time to conventional method of least squares. As a results, the method of dynamic least squares was well applicable to the adjustment of leveling nets.

  • PDF

Influencing factors and prediction of carbon dioxide emissions using factor analysis and optimized least squares support vector machine

  • Wei, Siwei;Wang, Ting;Li, Yanbin
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.175-185
    • /
    • 2017
  • As the energy and environmental problems are increasingly severe, researches about carbon dioxide emissions has aroused widespread concern. The accurate prediction of carbon dioxide emissions is essential for carbon emissions controlling. In this paper, we analyze the relationship between carbon dioxide emissions and influencing factors in a comprehensive way through correlation analysis and regression analysis, achieving the effective screening of key factors from 16 preliminary selected factors including GDP, total population, total energy consumption, power generation, steel production coal consumption, private owned automobile quantity, etc. Then fruit fly algorithm is used to optimize the parameters of least squares support vector machine. And the optimized model is used for prediction, overcoming the blindness of parameter selection in least squares support vector machine and maximizing the training speed and global searching ability accordingly. The results show that the prediction accuracy of carbon dioxide emissions is improved effectively. Besides, we conclude economic and environmental policy implications on the basis of analysis and calculation.

Recursive Least Squares Run-to-Run Control with Time-Varying Metrology Delays

  • Fan, Shu-Kai;Chang, Yuan-Jung
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.262-274
    • /
    • 2010
  • This article investigates how to adaptively predict the time-varying metrology delay that could realistically occur in the semiconductor manufacturing practice. Metrology delays pose a great challenge for the existing run-to-run (R2R) controllers, driving the process output significantly away from target if not adequately predicted. First, the expected asymptotic double exponentially weighted moving average (DEWMA) control output, by using the EWMA and recursive least squares (RLS) prediction methods, is derived. It has been found that the relationships between the expected control output and target in both estimation methods are parallel, and six cases are addressed. Within the context of time-varying metrology delay, this paper presents a modified recursive least squares-linear trend (RLS-LT) controller, in combination with runs test. Simulated single input-single output (SISO) R2R processes subject to various time-varying metrology delay scenarios are used as a testbed to evaluate the proposed algorithms. The simulation results indicate that the modified RLS-LT controller can yield the process output more accurately on target with smaller mean squared error (MSE) than the original RLSLT controller that only deals with constant metrology delays.