• 제목/요약/키워드: Square wave voltammetry

검색결과 75건 처리시간 0.022초

네모파 흡착 벗김 전압전류법에 의한 플루오로퀴놀론 계 항생제의 검출 (Determination of Fluoroquinolone Antibacterial Agents by Square Wave Adsorptive Stripping Voltammetry)

  • 부한길;송연주;박세진;정택동
    • 전기화학회지
    • /
    • 제13권1호
    • /
    • pp.63-69
    • /
    • 2010
  • 플루오로퀴놀론 계 항생제들의 전기화학적 거동을 카본 페이스트 전극 (carbon paste electrode ; CPE)을 사용하여 순환 전압전류법 (cyclic voltammetry)과 네모파 흡착 벗김 전압전류법 (square wave adsorptive stripping voltammetry)으로 연구하였다. Enrofloxacin (ENR), Norfloxacin (NOR), Ciprofloxacin (CIP), Ofloxacin (OFL), Levofloxacin (LEV) 등 5가지 플루오로퀴놀론 계 항생제에 대한 전기화학적 분석을 수행하였다. pH 4.5인 아세트산 완충 용액 (acetate buffer) 에서 플루오로퀴놀론 계 항생제의 산화 전위는 Ag/AgCl 기준 전극에 대하여 각각 ENR : 0.952V, NOR : 1.052 V, CIP : 1.055 V, OFL : 0.983 V, LEV : 0.990 V 의 값을 나타내었으며, 네모파 흡착 벗김 전압전류법에 의한 산화 전류는 $0.2\;{\mu}M$에서 $1\;{\mu}M$ 사이의 농도영역에서 각 항생제의 농도와 선형을 나타내었다.

FPGA SoC를 이용한 네모파 전압전류법의 주파수 변화에 따른 계측 분석 (Determination of Frequency for decision of heavy metal ion concentration in Square Wave Voltammetry with FPGA SoC)

  • 이재춘
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.101-107
    • /
    • 2018
  • In the stripping scan square wave voltammetry (SV+SWV) polarography that is often used to analyze the concentration of heavy metals in water, we must measure the point where the faradic current that flows by the pure oxidation-reduction reaction at the electrode is greater than the capacitive current, the frequency cannot be too high. Therefore we wanted to find the frequency range that can be measured. In order to do this, we came up with a method to analyze the signal using FPGA Soc. With this method, the frequency of the square wave was increased from 10Hz to 400Hz by 10Hz, and the measuring time of the square wave was changed from 96.695% to 96.765% by 0.005% while 1600 experiments were conducted. As a result, the frequency of the square wave maintained a stable area of potential-current within 320Hz and it was possible to measure the potential-current signal when calculating the measuring time within the frequency range of 96.7155%.

FPGA를 이용한 네모파 전압전류법의 계측시간 분석 (Determination of measuring time for decision of heavy metal ion concentration in Square Wave Voltammetry with FPGA)

  • 이재춘
    • 디지털산업정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.25-31
    • /
    • 2016
  • In this research, to analyze the concentration of heavy metal ions in water, we tried to find the measuring time at which the faradaic electric currents flowing by the pure oxidation-reduction reaction from the pushing up mercury electrode of the stripping scan square wave voltammetry(SV+SWV) methods system becomes larger than the capacitance electric current. In order to do this, a method for analyzing signals using FPGA has been designed and we conducted 120 experiments using it. As a result, when the frequency of the square wave is 40Hz, The valid potential-current signal was measured from 96.6667% to 96.7155% of the end of the pulse of the forward and reverse, and the optimal signal was measured at 96.6667%. In addition, the experiment was carried out 40 times by changing the pulse height of the square wave from 10Mv to 40Mv. As a result, at a size smaller than 40Mv, there is little change in the magnitude of the potential-current, and an invalid signal was generated when it is out of this size.

Electrochemical Behavior and Square Wave Voltammetric Determination of Doxorubicin Hydrochloride

  • Hahn, Young-Hee;Lee, Ho-Young
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.31-34
    • /
    • 2004
  • The electrochemical behavior of doxorubicin hydrochloride was investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV). From CV and SWV studies of doxorubicin hydrochloride in the acetate buffers of various pH values, it was found that protons were involved in the reduction of the antibiotic at the $H^+/e^$- ratio at one ( $\DeltaEp/pH =-53 ∼ -61 mV at 23^{\circ}C$), proposing the electrochemical reduction of the quinone moiety in its anthraquinone aglycone. Its electrochemical behavior was pseudo-reversible in the acetate buffer of pH 3.5 by exhibiting the well-defined single cathodic and anodic waves and the ratio of $lp^a/lp^c$ at approximately one over the scan rates of 10∼100 mV/s. Fast and sensitive SWV showing a single peak of doxorubicin has been applied for its quantitative analysis using an acetate buffer of pH 3.5. A linearity was obtained when the peak currents (lp) were plotted against concentrations of doxorubicin in the range of $5.0\times10^{-7} M∼1.0\times10^{-5}$M with a detection limit of $1.0\times10^{-7}$ M.

네모파 전압전류법 측정을 위한 블루투스 기반 휴대형 포텐쇼스탯 (A Portable Potentiostat with Bluetooth Communication for Square wave Voltammetry Measurement)

  • 심원식;한지훈;김수윤;권현정;박정호
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.622-627
    • /
    • 2016
  • This paper describes the development of a portable potentiostat which can perform square wave voltammetry on electrochemical sensors and wireless transmission of the measured data to a smartphone using Bluetooth. The potentiostat consists of a square wave potential pulse generation circuit for applying the potential pulse to the electrochemical sensor, a reduction/oxidation (or redox) current measurement circuit, and Bluetooth for wireless data transmission to an Android-based smartphone. The measured data are then processed to show the output graph on the smart phone screen in real time. This data transformation into a graph is carried out by developing and installing a simple transformation application software in the Android-based smartphone. This application software also enables the user to set and change the measurement parameters such as the applied voltage range and measured current range at user's convenience. The square voltammetry output data measured with the developed portable potentiostat were almost same as the data of the commercial potentiostat. The measured oxidation peak current with the commercial potentiostat was $11.35{\mu}A$ at 0.26 V and the measured oxidation peak current with the developed system was $12.38{\mu}A$ at 0.25 V. This proves that performance of the developed portable measurement system is comparable to the commercial one.

서로 다른 다가이온을 함유한 음극선관 전면유리 용융체의 Square Wave Voltammetry (Square Wave Voltammetry in Cathode Ray Tube Glass Melt Containing Different Polyvalent Ions)

  • 김기동;김효광;김영호
    • 한국세라믹학회지
    • /
    • 제44권6호
    • /
    • pp.297-302
    • /
    • 2007
  • With aids of square wave voltammetry (SWV) the redox behavior for various combination of polyvalent ions (Sb+Fe, Sb+Zn, Sb+Ce+Ti+Zn) was investigated in alkali-alkaline earth-silica CRT (Cathode Ray Tube) glass melts. The current-potential curve so called voltammogram was produced at temperature range of 1400 to $1000^{\circ}C$ under the scanned potential between 0 and -800 mV at 100 Hz. In the case of the Sb+Fe and Sb+Zn doped melts, peak for $Sb^{3+}/Sb^0$ shown voltammogram was shifted to negative direction comparing to the only Sb doped melts. However, according to voltammogram of Sb+Ce+Ti+Zn doped melt, Ti and Ce except Zn had hardly any influence on the redox reaction of Sb. Based on the temperature dependence of the peak potential, standard enthalpy (${\Delta}H^0$) and standard entropy (${\Delta}S^0$) for the reduction of $Fe^{3+}$ to $Fe^{2+}$, $Sb^{3+}$ to $Sb^0$, $Zn^{2+}$ to $Zn^0$ and $Ti^{2+}$ to $Ti^0$ in each polyvalent ion combination of CRT glass melts were calculated.

Redox Equilibrium of Antimony by Square Wave Voltammetry Method in CRT Display Glass Melts

  • Jung, Hyun-Su;Kim, Ki-Dong;Kim, Hyo-Kwang;Kim, Young-Ho
    • 한국세라믹학회지
    • /
    • 제44권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Fining and homogenization of melts during batch melting is closely related to the redox reaction of polyvalent element M (M: Sb, As etc), $M^{(x+n)+}+n/2O^{2-}{\rightarrow}M^{x+}+n/4O_2$. In this study, square wave voltammetry (SWV) measurements were performed to examine the redox behavior of an antimony ion in cathode ray tube (CRT) glass melts. According to results, well-separated two peaks are shown at low temperature while only one peak is shown at high temperature in voltammograms, which reveals that redox reaction of antimony consist of two steps: $Sb^{5+}/Sb^{3+}\;and\;Sb^{3+}/Sb^0$, depending on the temperature. Based on the peak potential shown in the voltammogram, the thermodynamic data and the redox ratio for two redox couple were determined.

Voltammetric Assay of Silver Ions in Frog's Tissue

  • Ly, Suw-Young;Lee, Jin-Hui;Lee, Chang-Hyun
    • 한국응용과학기술학회지
    • /
    • 제30권1호
    • /
    • pp.139-145
    • /
    • 2013
  • The electrochemical analysis of silver ion was performed using cyclic voltammetry (CV) and square-wave (SW) stripping voltammetry, and electrode cell systems were fabricated with graphite pencil electrode (GE) of working, reference and counter electrodes. Also electrolyte was the use of sea water as electrolyte solutions instead of ionic controlled solutions. The optimum analytical conditions for the cyclic and stripping parameters were determined using GE. The results approached the microgram working ranges of SW(ug/L) and CV(ug/L) Ag, and the optimum conditions were applied to frog's tissue and the food samples.

Electrooxidation of Zolpidem and its Voltammetric Quantification in Standard and Pharmaceutical Formulation using Pencil Graphite Electrode

  • Naeemy, A.;Sedighi, E.;Mohammadi, A.
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.68-75
    • /
    • 2016
  • In this study a new, simple, precise, accurate and economic electrochemical method was developed and validated for the voltammetric determination of zolpidem (ZP) using disposable pencil graphite (PG) electrode. The anodic oxidation of ZP on the surface of the PG electrode was examined in a britton robinson (BR) buffer. Square wave and cyclic voltammetry were used as electrochemical techniques in the potential range of 0-1.2 V in the pH 8 BR buffer. In cyclic voltammetry studies, the diffusion coefficient of ZP oxidation was found to be 3.6×10-6 cm2 s-1. On the other hand, the ZP has shown a well-defined irreversible anodic peak at 0.98 V in the square wave voltammetry mode. The PG electrode, primarily being graphite which has a large active surface area gives rise to increasing peak current with respect to ZP electrooxidation. PG electrode showed an electrocatalytic effect in anodic oxidation of ZP. A linear relationship between catalytic current response and ZP concentration was obtained over a concentration range of 10-30 μM with R.S.D. values ranging from 0.29-3.89. Limits of detection and quantitation were found to be 1 and 3 μM, respectively. Finally, the PG electrode was successfully used to determine ZP in standard and tablet dosage forms with a mean recovery of 100.69 %.

N-히드록시숙신이미드로 수식한 탄소반죽전극을 이용한 도파민의 전기화학적 측정 (Voltammetric Determination of Dopamine with the N-Hydroxysuccinimide Modified Carbon Paste Electrode)

  • 유재현;우병욱;김순신;엄정희;남학현;차근식
    • 전기화학회지
    • /
    • 제4권3호
    • /
    • pp.109-112
    • /
    • 2001
  • 활성화된 탄소반죽전극 표면을 N피드록시숙신이미드(NHS)층으로 수식한 후, 이 전극을 이용하여 square-wave voltammetry방법으로 과량의 아스코빅산 존재 하에서 도파민을 측정하였다. 수식된 전극의 특성은 도파민과 아스코빅산 혼합용액에서 순한전압전류법을 이용하여 조사하였다. 도파민과 아스코빅산의 산화 피크의 분리는 시료용액의 pH에 큰 영향을 받았으며, pH 4.0에서 최대의 피크분리(172mv)를 보였다. 따라서 도파민을 정량하기 위한 square-wave voltammeoy는 140 mM NaCl을 포함하는 100 mM phosphate buffered saline (PBS)의 pH 4.0 조건에서 수행하였다. NHS로 수식된 전극은 0.2mM 아스코빅 산의 존재 하에서 도파민의 농도 $5.0\times10^{-2}$까지 검출한계와 감응기울기 $6.1{\mu}A/{\mu}M$의 감도를 나타내었다. 반면 수식되지 않은 전극은 $1.0{\mu}M$의 검출한계와 $0.93{\mu}A/{\mu}M$ 기울기를 나타내어 표면에 수식된 N-히드록시숙신이미드가 도파민의 감응을 촉진함을 보여주었다.