• Title/Summary/Keyword: Square pulse

Search Result 259, Processing Time 0.026 seconds

Study on Machining Speed according to Parameters in Micro ECM (가공 인자에 다른 미세 전해 가공 속도 변화 연구)

  • Kwon, Min-Ho;Park, Min-Soo;Shin, Hong-Shik;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.308-314
    • /
    • 2011
  • In micro electrochemical machining (micro ECM), machining conditions have been determined to maintain a small side gap and to machine a workpiece stably However, machining speed is slow. To improve machining speed while maintaining the form accuracy, the paper investigates machining parameters such as pulse amplitude, duty ratio, pulse on-time, and the electrolyte's temperature and concentration. The experiment in this study shows that the electrolyte's concentration is the key factor that can reduce machining time while maintaining the form accuracy Micro square columns were fabricated to confirm the machining parameters' effects.

Analysis of the Pulse Distortion on Tapered Microstrip Lines (테이퍼형 마이크로스트립 선로에서 펄스의 왜곡 특성 분석)

  • Kim, Gi-Rae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.8
    • /
    • pp.45-51
    • /
    • 2000
  • The distortion of an electrical pulse, which has a rise/fall time due to the dispersion and the reflection, on tapered microstrip lines has investigated In time domain. The voltage and current transfer functions are shown for the tapered line. The dispersion distortion obtained by using these trans(or functions are represented for the nonideal square pulse along the triangular, Tchebycheff and exponential tapered lines, and analyzed the influence of the reflection and the frequency dispersion on the distorted voltage wave in the tapered lines. The observed overshoot in front of the distorted wane is caused due to the frequency dispersion and the sustained tail of that comes from the reflection in the tapered line.

  • PDF

Nox reduction of exhaust gas using corona discharge (코로나방전을 이용한 배기가스중의 Nox제거)

  • 김종달;박재윤;고희석
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.721-726
    • /
    • 1995
  • In this paper, reduction characteristics of NOx gas produced from diesel engine combustion is studied by using pulse corona discharge. Nox concentration of 1900ppm (NO 1870, NO$\sub$2/ 30 ppm, N$\sub$2/ balance gas) was controlled in a fixed quantity of 280ppm, using a flow meter. Reactors are composed of cylinder type. NOx reduction rate is investigated with discharge electrode diameter[0.5,1,3,4.phi.], reactor length [130,300mm], reactor materials[Copper, Poly Vinyl Chloride] and Input voltage[DC, AC, DC Pulse square voltage]. In the result, NOx reduction rate is the best of all in copper reactor, small electrode diameter[0.5.phi.], DC pulse voltage and long reactor[300mm]. Then Teduction rate of NOx is about 93%.

  • PDF

The Static Characteristics Investigation of Lineal Pulse Motor According to Input Current Waveforms (입력 전류 파형에 따른 Linear Pulse Motor의 정특성 고찰)

  • Heo, Du-Suk;Kim, Kyung-Ho;Hwang, Dong-Won;Cho, Yoon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.747-749
    • /
    • 2003
  • When the input current wave forms of Linear Pulse Motor(LPM) is excited as three difference type such as the square, the rectangular and the micro sinusoidal wave, this paper is proposed the calculation of thrust on the base of magnetic equivalent circuit of LPM. The thrust is analyzed and compared by the analytical method, the F.E.M. and the experimental values. Also, to decide the input current wave for optimal operation condition, the vibration of LPM is experimented and estimated.

  • PDF

Sensorless Control of IPMSM with a Simplified High-Frequency Square Wave Injection Method

  • Alaei, Ahmadreza;Lee, Dong-Hee;Ahn, Jin-Woo;Saghaeian Nejad, Sayed Morteza
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1515-1527
    • /
    • 2018
  • This paper presents a sensorless speed control of IPMSM (Interior Permanent Magnet Synchronous Motor) using the high-frequency (HF) square wave injection method. In the proposed HF pulsating square wave injection method, injection voltage is applied into the estimated d-axis of rotor and high-frequency induced q-axis current is considered to estimate the rotor position. Conventional square wave injection methods may need complex demodulation process to find rotor position, while in the proposed method, an easy demodulation process based on the rising-falling edge of the injected voltage and carrier induced q-axis current is implemented, which needs less processing time and improves control bandwidth. Unlike some saliency-based sensorless methods, the proposed method uses maximum torque per ampere (MTPA) strategy, instead of zero d-axis command current strategy, to improve control performance. Furthermore, this paper directly uses resultant d-axis current to detect the magnet polarity and eliminates the need to add an extra pulse injection for magnet polarity detection. As experimental results show, the proposed method can quickly find initial rotor position and MTPA strategy helps to improve the control performance. The effectiveness of the proposed method and all theoretical concepts are verified by mathematical equations, simulation, and experimental tests.

Development of Electrical Stimulator for Restoration of Locomotion in Paraplegic Patients (하반신마비 환자에서 보행기능의 복원을 위한 전기자극법의 개발)

  • 박병림;김민선
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.429-438
    • /
    • 1994
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate eleclromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocnemius m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher'stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical slimulator restored partially gait function in paraplegic patients.

  • PDF

Selective Reset Waveform using Wide Square Erase Pulse in an ac PDP (AC PDP에서의 대폭소거방식을 이용한 선택적 초기화 파형)

  • Jeong, Dong-Cheol;Whang, Ki-Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2189-2195
    • /
    • 2007
  • In this paper, we propose a newly developed selective reset waveform of a ac PDP using the wide erase pulse technique with the control of address bias voltage. Although it is generally understood that the wide pulse erasing methode shows the narrow driving margin in an opposite discharge type ac PDP, we could obtain a moderate driving margin in a 3-electrode surface discharge type ac PDP. The obtained driving margin shows a strong dependency on the sustain voltage and the address bias voltage. The lower the sustain and the address bias voltage, the wider the driving margin. The pulse width of the proposed waveform is only $10{\mu}s$, which gives additional time to the sustain period, hence increases the brightness. The brightness and contrast ratio increase about 20% together comparing to the conventional ramp type selective reset waveform with the driving scheme of 10 subfield ADS method. The driving margin was measured with the line by line addressed pattern on the white test panel of 2inch diagonal size and the discharge gas was Ne+Xe4%, 400torr.

All-Optical AND Gate Using XPM Wavelength Converter

  • Kim, Jae-Hun;Kang, Byoung-Kwon;Park, Yoon-Ho;Byun, Young-Tae;Lee, Seok;Woo, Deok-Ha;Kim, Sun-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.25-28
    • /
    • 2001
  • By using an XPM (Cross Phase Modulation) wavelength converter, an all-optical AND gate, which is one of six fundamental logic gates, has been demonstrated. The wavelengths for probe and pump signals are 1553.8 and 1545 nm, respectively. First, characteristics of the XPM wavelength converter have been studied. When both probe and pump signals are driven by high power, the output power of the XPM wavelength is high. Based on this fact and the experiment, the all-optical AND gate has been porved. Probe and pump signals are transformed to pulse signals by using Mach-Zehnder modulator, which is induced by a pulse generator. Square pulse signals that are similar to the format of NRZ signals have been generated. By coupling two pulse signals into the XPM wavelength converter, AND characteristics in substantiated.

Study on Production of Cloned Animals by Recycling Nuclear Transplantation I. Activation of Nuclear Recipient Oocytes by Electrostimulation in Rabbits (반복핵이식에 의한 복제동물 생산에 관한 연구 I. 토끼 수핵난자의 전기자극에 의한 활성화)

  • 이효종;최민철;최상용;박충생;윤창현;강대진
    • Journal of Embryo Transfer
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 1993
  • The present study was undertaken to determine the optimal condition for parthenogenetic activation of rabbit oocytes by electric stimulation in vitro in an attempt to develop nuclear transplantation techniques for cloning mammalian embryos and animals. Freshly ovulated oocytes were collected from superovulated rabbits from 13 to 26 hrs. after hCG injection. The cumulus-free oocytes were activated parthenogetically by repeated stimuli of square direct electric pulses in O.3M mannitol solution. After applying electric stimulations of different voltages, pulse durations and pulse times, all of the oocytes were cultured in TCM-199 with 10% FCS for 96 hours in a 5% $CO_2$ incubator, and their developmental potential in vitro was examined. The higher activation rate (68.9%) was achieved at the voltage of 2.0kv/cm, the pulse duration of 60 $\mu$sec and three pulse times and the activation rate of 100% was achieved at the pulse duration of 100 and 200 $\mu$sec, the voltage of 1.5kv/cm and three pulse times. Although the higher rates of activation of oocytes were achieved at 100 and 200 $\mu$sec, none of them developed to blastocyst in vitro. The oocytes collected 18~20 hours post hCG injection showed the highest rate of activation and development to blastocyst in vitro than the oocytes collected 13~15 or 25~26 hours post hCG injection. Therefore, it can be suggested that the application of electric stimulation of 2.0kv/cm, 60 $\mu$sec and three pulse times to the oocytes collected at 18~20 hours post hCG injection would be more beneficial for the parthenogenetic activation of oocytes in rabbits.

  • PDF

Influence of Sustain Pulse-width on Electrical Characteristics and Luminous Efficiency in Surface Discharge of AC-PDP

  • Jeong, Yong-Whan;Jeoung, Jin-Man;Choi, Eun-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.276-279
    • /
    • 2005
  • Influences of sustain pulse-width on electrical characteristics and luminous efficiency are experimentally investigated for surface discharge of AC-PDP. A square pulse with variable duty ratio and fixed rising time of 300 ns has been used in the experiment. It is found that the memory coefficient is significantly increased at the critical pulse-width. And the wall charges and wall voltages as well as capacitances are experimentally measured by Q- V analysis method along with the voltage margin relation, in terms of the sustain pulse-width in the range of $1{\mu}s$ to $5{\mu}s$ under driving frequency of 10 kHz to 180 kHz. And the luminous efficiency is also experimentally investigated in above range of sustain pulse-width with driving frequency of 10 kHz to 180 kHz. It is noted that the luminous efficiency for 10 kHz and 180 kHz are 1.29 1m/W and 0.68 1m/W respectively, since the power consumption for 10 kHz is much less than that for 180 kHz. It has been concluded that the optimal sustain pulse-width is in the range of $2.5 {\~}4.5{\mu}s$ under driving frequency range of 10 kHz and 60 kHz, and in the range of $1.5 {\~} 2.5{\mu}s$ under driving frequency range of 120 kHz and 180 kHz based on observation of memory coefficient, and wall voltage as well as luminous efficiency.