• Title/Summary/Keyword: Square computing

Search Result 172, Processing Time 0.024 seconds

Prediction of Storm Surge Height Using Synthesized Typhoons and Artificial Intelligence (합성태풍과 인공지능을 활용한 폭풍해일고 예측)

  • Eum, Ho-Sik;Park, Jong-Jib;Jeong, Kwang-Young;Park, Young-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.892-903
    • /
    • 2020
  • The rapid and accurate prediction of storm-surge height during typhoon attacks is essential in responding to coastal disasters. Most methods used for predicting typhoon data are based on numerical modeling, but numerical modeling takes significant computing resources and time. Recently, various studies on the expeditious production of predictive data based on artificial intelligence have been conducted, and in this study, artificial intelligence-based storm-surge height prediction was performed. Several learning data were needed for artificial intelligence training. Because the number of previous typhoons was limited, many synthesized typhoons were created using the tropical cyclone risk model, and the storm-surge height was also generated using the storm surge model. The comparison of the storm-surge height predicted using artificial intelligence with the actual typhoon, showed that the root-mean-square error was 0.09 ~ 0.30 m, the correlation coefficient was 0.65 ~ 0.94, and the absolute relative error of the maximum height was 1.0 ~ 52.5%. Although errors appeared to be somewhat large at certain typhoons and points, future studies are expected to improve accuracy through learning-data optimization.

Camera Extrinsic Parameter Estimation using 2D Homography and Nonlinear Minimizing Method based on Geometric Invariance Vector (기하학적 불변벡터 기탄 2D 호모그래피와 비선형 최소화기법을 이용한 카메라 외부인수 측정)

  • Cha, Jeong-Hee
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.187-197
    • /
    • 2005
  • In this paper, we propose a method to estimate camera motion parameter based on invariant point features, Typically, feature information of image has drawbacks, it is variable to camera viewpoint, and therefore information quantity increases after time, The LM(Levenberg-Marquardt) method using nonlinear minimum square evaluation for camera extrinsic parameter estimation also has a weak point, which has different iteration number for approaching the minimal point according to the initial values and convergence time increases if the process run into a local minimum, In order to complement these shortfalls, we, first proposed constructing feature models using invariant vector of geometry, Secondly, we proposed a two-stage calculation method to improve accuracy and convergence by using 2D homography and LM method, In the experiment, we compared and analyzed the proposed method with existing method to demonstrate the superiority of the proposed algorithms.

  • PDF

The Cut Detection System using Sum of Square Difference of Color between frames of Video Image Data (동영상데이터의 프레임간 색상차의 자승합을 이용한 컷 검출시스템)

  • 김병철;정창렬;고진광
    • Journal of Internet Computing and Services
    • /
    • v.3 no.5
    • /
    • pp.51-62
    • /
    • 2002
  • The development of computer technology and the advancement of the technology of information and communications spread the technology of multimedia and increased the use of multimedia data with large capacity, Users can grasp the overall video data and they are able to play wanted video back. To grasp the overall video data it is necessary to offer the list of summarized video data information, In order to search video efficiently on index process of video data is essential and it is also indispensable skill, Therefore, this thesis suggested the effective method about the cut detection of frames which will become a basis of an index based on contents of video image data. This suggested method was detected as the unchanging pixel color intelligence value, classified into diagonal direction. Pixel value of color detected in each frame of video data is stored as A(i, j) matrix-i is the number of frames. j is an image height of frame. By using the stored pixel value as the method of sum of squared difference of color two frames I calculated a specified value difference between frames and detected cut quickly and exactly in case it is bigger than threshold value set in advance, To carry out on experiment on the cut detection of frames comprehensively, I experimented on many kinds of video. analyzing and comparing efficiency of the cut detection system.

  • PDF

Usability Evaluation of the Touch Keys for the Smart Watch (스마트 워치 터치스크린에서의 터치 키에 대한 사용성 연구)

  • Kim, Su Young;Ban, Kimin;Choe, Jaeho;Jung, Eui S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.225-232
    • /
    • 2015
  • The smart watch is the most popular wearable computing device because it takes a form of wristwatch. Many smart watches have adopted the touch screen interface due to the limited size of display. This paper focuses on touch key size and spacing that affect the usability about the touch key of smart watch. The experiments were made for four touch key sizes (width${\times}$height; $5{\times}5$, $5{\times}7$, $7{\times}5$, $7{\times}7mm$) and nine touch key spacing (vertical${\times}$horizontal; $0{\times}0$, $0{\times}1$, $0{\times}3$, $1{\times}0$, $1{\times}1$, $1{\times}3$, $3{\times}0$, $3{\times}1$, $3{\times}3mm$). The completion time, error rate, control discomfort and identification discomfort were measured. The touch key size $7{\times}7$, $7{\times}5$ and the touch key spacing $3{\times}3$, $1{\times}3$ provided the best results in terms of the completion time and the control discomfort, while the square touch key ($7{\times}7$, $5{\times}5$) provided the best performance for the error rate measure. The result of this study can help ergonomically design the touch interface of the smart watch.

Sensorless Detection of Position and Speed in Brushless DC Motors using the Derivative of Terminal Phase Voltages Technique with a Simple and Versatile Motor Driver Implementation

  • Carlos Gamazo Real, Jose;Jaime Gomez, Gil
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1540-1551
    • /
    • 2015
  • The detection of position and speed in BLDC motors without using position sensors has meant many efforts for the last decades. The aim of this paper is to develop a sensorless technique for detecting the position and speed of BLDC motors, and to overcome the drawbacks of position sensor-based methods by improving the performance of traditional approaches oriented to motor phase voltage sensing. The position and speed information is obtained by computing the derivative of the terminal phase voltages regarding to a virtual neutral point. For starting-up the motor and implementing the algorithms of the detection technique, a FPGA board with a real-time processor is used. Also, a versatile hardware has been developed for driving BLDC motors through pulse width modulation (PWM) signals. Delta and wye winding motors have been considered for evaluating the performance of the designed hardware and software, and tests with and without load are performed. Experimental results for validating the detection technique were attained in the range 5-1500 rpm and 5-150 rpm under no-load and full-load conditions, respectively. Specifically, speed and position square errors lower than 3 rpm and between 10º-30º were obtained without load. In addition, the speed and position errors after full-load tests were around 1 rpm and between 10º-15º, respectively. These results provide the evidence that the developed technique allows to detect the position and speed of BLDC motors with low accuracy errors at starting-up and over a wide speed range, and reduce the influence of noise in position sensing, which suggest that it can be satisfactorily used as a reliable alternative to position sensors in precision applications.

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.297-302
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous computing environment and applications, for which Radio Frequency Identification(RFID) has been considered as a core technology. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and kcan be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in I-Dimensional space, the square in 2-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous communication computing environment and applications, for which Radio Frequency IDentification Identification(RFID) is has been considered as also a core technology for ubiquitous wireless communication. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and k can be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in 1-Dimensional space, the square in 2-Dimensional space and the cubic in 3-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2- and 3-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space and 143% of the tag spacing distance in 3-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF

Implementation of a Coded Aperture Imaging System for Gamma Measurement and Experimental Feasibility Tests

  • Kim, Kwangdon;Lee, Hakjae;Jang, Jinwook;Chung, Yonghyun;Lee, Donghoon;Park, Chanwoo;Joung, Jinhun;Kim, Yongkwon;Lee, Kisung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.66-70
    • /
    • 2017
  • Radioactive materials are used in medicine, non-destructive testing, and nuclear plants. Source localization is especially important during nuclear decommissioning and decontamination because the actual location of the radioactive source within nuclear waste is often unknown. The coded-aperture imaging technique started with space exploration and moved into X-ray and gamma ray imaging, which have imaging process characteristics similar to each other. In this study, we simulated $21{\times}21$ and $37{\times}37$ coded aperture collimators based on a modified uniformly redundant array (MURA) pattern to make a gamma imaging system that can localize a gamma-ray source. We designed a $21{\times}21$ coded aperture collimator that matches our gamma imaging detector and did feasibility experiments with the coded aperture imaging system. We evaluated the performance of each collimator, from 2 mm to 10 mm thicknesses (at 2 mm intervals) using root mean square error (RMSE) and sensitivity in a simulation. In experimental results, the full width half maximum (FWHM) of the point source was $5.09^{\circ}$ at the center and $4.82^{\circ}$ at the location of the source was $9^{\circ}$. We will continue to improve the decoding algorithm and optimize the collimator for high-energy gamma rays emitted from a nuclear power plant.

Word Sense Disambiguation of Predicate using Semi-supervised Learning and Sejong Electronic Dictionary (세종 전자사전과 준지도식 학습 방법을 이용한 용언의 어의 중의성 해소)

  • Kang, Sangwook;Kim, Minho;Kwon, Hyuk-chul;Oh, Jyhyun
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.2
    • /
    • pp.107-112
    • /
    • 2016
  • The Sejong Electronic(machine-readable) Dictionary, developed by the 21st century Sejong Plan, contains systematically organized information on Korean words. It helps to solve problems encountered in the electronic formatting of the still-commonly-used hard-copy dictionary. The Sejong Electronic Dictionary, however has a limitation relate to sentence structure and selection-restricted nouns. This paper discuses the limitations of word-sense disambiguation(WSD) that uses subcategorization information suggested by the Sejong Electronic Dictionary and generalized selection-restricted nouns from the Korean Lexico-semantic network. An alternative method that utilized semi-supervised learning, the chi-square test and some other means to make WSD decisions is presented herein.

An ABR Service Traffic Control of Using feedback Control Information and Algorithm (피드백 제어 정보 및 알고리즘을 이용한 ABR 서비스 트래픽제어)

  • 이광옥;최길환;오창윤;배상현
    • Journal of Internet Computing and Services
    • /
    • v.3 no.3
    • /
    • pp.67-74
    • /
    • 2002
  • Asynchronous transfer mode (ATM) can be efficiently used to transport packet data services. The switching system will support voice and packet data services simultaneously from end to end applications. To guarantee quality of service (QoS) of the offered services, source rate to send packet data is needed to control the network overload condition. Most existing control algorithms are shown to provide the threshold-based feedback control technique. However, real-time voice calls can be dynamically connected and released during data services in the network. If the feedback control information delays, quality of the serviced voice can be degraded due to a time delay between source and destination in the high speed link, An adaptive algorithm based on the optimal least mean square error technique is presented for the predictive feedback control technique. The algorithm attempts to predict a future buffer size from weight (slope) adaptation of unknown functions, which are used for feedback control. Simulation results are presented, which show the effectiveness of the algorithm.

  • PDF