• Title/Summary/Keyword: Square Rib

Search Result 73, Processing Time 0.024 seconds

An Investigation of Angled Discrete Rib-Turbulators for Cooling Enhancement of Gas Turbine Blades (가스 터빈 블레이드 냉각 성능 향상을 위한 경사요철의 단락 효과)

  • Wu, Seong-Je;Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.782-789
    • /
    • 2001
  • Local heat/mass transfer and friction loss in a square duct roughened with various types of continuous and discrete rib turbulators are investigated. The combined effects of the gap flows of the discrete ribs and the secondary flows are examined for the purpose of the reduction of thermally weak regions and the promotion of the uniformity of heat/mass transfer distributions as well as the augmentation of average heat/mass transfer. The rib-to-rib pitch to the rib height ratio (p/e) of 8 and the rib angles of 90 and 60 deg are selected with $e/D_{h}=0.08$. The vortical structure of the secondary flows induced by the parallel angled arrays are quite distinct from that induced by the cross angled arrays. This distinction influences on heat/mass transfer and friction loss in all the tested cases. The gap flows of the discrete ribs reduce the strength of the secondary flows but promote local turbulence and flow mixing. As a result, the fairly uniform heat/mass transfer distributions are obtained with two row gaps.

  • PDF

Detailed Measurement of Heat/Mass Transfer in a Rotating Two-Pass Duct (I) - Effects of Rib Tubulators - (이차 냉각 유로를 가진 회전덕트에서 열/물질전달 특성 (I) - 요철 설치에 따른 영향 -)

  • Kim, Kyung-Min;Kim, Sang-In;Kim, Yun-Young;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.910-920
    • /
    • 2004
  • The heat/mass transfer characteristics in a rotating two-pass duct with and without rib turbulators are investigated in the present study. The square duct has a hydraulic diameter ($D_h$) of 26.7 mm, and $1.5\;mm{\times}1.5\;mm$ square $90^{\circ}$-rib turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The Reynolds number based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number is varied from 0.0 to 0.20. In the smooth duct, the curvature of the $180^{\circ}$-turn produces Dean vortices that enhance heat/mass transfer in the post-turn region. When rib turbulators are installed, heat/mass transfer is augmented 2.5 times higher than that of the smooth duct since the main flow is turbulated by reattaching and separating in the vicinity of the duct surfaces. The duct rotation results in heat/mass transfer discrepancy so that Sherwood number ratios are higher on the trailing surface in the first-pass and on the leading surface in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent heat/mass transfer characteristics also change. As the rotation number increases, the heat/mass transfer discrepancy enlarges.

Large Eddy Simulation of Flow and Heat Transfer in a Channel Roughened by Square or Semicircle Ribs (사각 또는 반원 형상의 요철이 설치된 채널 내부의 유동 및 열전달의 큰에디모사)

  • Ahn, Joon;Choi, Hae-Cheon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1436-1441
    • /
    • 2004
  • The internal cooling passage of a gas turbine blade can be modeled as a ribbed channel. Most studies have considered square ribs. However, the ribs can be rounded due to improper manufacturing or wear during the operation. Hence, we have studied two different rib geometries in this study, i.e. square and semicircle ribs. We have performed large eddy simulations (LES) and experiments to validate the results from the simulations. LES predicts the detailed flow and thermal features, which have not been captured by simulations using turbulence models. By investigating the instantaneous flow and thermal fields, we propose the mechanisms for the local heat transfer distribution between ribs. For both the geometries, heat transfer is enhanced by the entrainment of the cold fluid by the vortical motions and impingement of the entrained cold fluid on the ribs.

  • PDF

An Experimental Studies on Heat Transfer and Friction Factor in a Square Channel with Varying Number of Ribbed Walls

  • Oh Se-Kyung;Kim Won-Cheol;Ahn Soo-Whan;Kang Ho-Keun;Kim Myoung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.281-289
    • /
    • 2005
  • An experimental study on the heat transfer and friction characteristics of a fully developed turbulent air flow in a square channel with $45^{\circ}$ inclined ribs on one, two, and four walls is reported. Tests were performed for Reynolds number ranging from 7,600 to 24,900. The pitch-to-rib height ratio, p/e, was kept at 8 and rib height-to-channel hydraulic diameter ratio, $e/D_h$, was kept at 0.0667. The heat transfer coefficient and friction factor values were enhanced with the increase in the number of ribbed walls. Results of this investigation could be used in various applications of internal channel turbulent flows involving different number of roughened walls.

Characteristics of Heat Transfer in the Channel with Twisted Tape

  • Ahn, Soo-Whan;Kang, Ho-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • Heat transfer distributions and friction factors in square channels (3.0 ${\times}$ 3.0 cm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are respectively investigated. The rib height-to-channel hydraulic diameter ratio, $e/D_h$, is kept at 0.067 and test section length-to-hydraulic diameter ratio, $L/D_h$ is 30. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. The twisted tape is 0.1 mm thick carbon steel sheet with diameter of 2.8 cm, length of 90 cm, and 2.5 turns. Two heating conditions are investigated for test channels with twisted tape inserts and rib turbulators: (1) electric heat uniformly applied to four side walls of the square duct, and (2) electric heat uniformly applied to two opposite ribbed walls of the square channel. Results show that the twisted tape with interrupted ribs provides a higher overall heat transfer performance over the twisted tape with no ribs.

Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs (90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

Heat/Mass Transfer Characteristics on Rib-roughened Surface for Impingement/Effusion Cooling System with Initial Crossflow (초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 요철이 설치된 유출면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Nam, Yong-Woo;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.338-348
    • /
    • 2004
  • The present study is conducted to investigate the effect of rib arrangements on an impingement/effusion cooling system with initial crossflow. To simulate the impingement/effusion cooling system, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of tile hole diameter. Initial crossflow passes between the injection and effusion plates, and the square ribs (3mm) are installed on the effusion plate. Both the injection and effusion hole diameters are 10mmand Reynolds number based on the hole diameter and hole-to-hole pitch are fixed to 10,000 and 6 times of the hole diameter, respectively. To investigate the effects of rib arrangements, various rib arrangements, such as 90$^{\circ}$transverse and 45$^{\circ}$angled rib arrangements, are used. Also, the effects of flow rate ratio of crossflow to impinging jets are investigated. With the initial crossflow, locally low transfer regions are formed because the wall jets are swept away, and level of heat transfer rate get decreased with increasing flow rate of crossflow. When the ribs are installed on the effusion plate, the local distributions of heat/mass transfer coefficients around the effusion holes are changed. The local heat/mass transfer around the stagnation regions and the effusion holes are affected by the rib positions, angle of attack and rib spacing. For low blowing ratio, the ribs have adverse effects on heat/mass transfer, but for higher blowing ratios, higher and more uniform heat transfer coefficient distributions are obtained than the case without ribs because the ribs prevent the wall jets from being swept away by the crossflow and increase local turbulence of the flow near the surface. Average heat transfer coefficients with rib turbulators are approximately 10% higher than that without ribs, and the higher values are obtained with small pitch of ribs. However, the attack angle of the rib has little influence on the average heat/mass transfer.

Exergetic analysis for optimization of a rotating equilateral triangular cooling channel with staggered square ribs

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Exergetic analysis was introduced in optimization of a rotating equilateral triangular internal cooling channel with staggered square ribs to maximize the net exergy gain. The objective function was defined as the net exergy gain considering the exergy gain by heat transfer and exergy losses by friction and heat transfer process. The flow field and heat transfer in the channel were analysed using three-dimensional Reynolds-averaged Navier-Stokes equations under the uniform temperature condition. Shear stress transport turbulence model has been selected as a turbulence closure through the turbulence model test. Computational results for the area-averaged Nusselt number were validated compared to the experimental data. Three design variables, i.e., the angle of rib, the rib pitch-to-hydraulic diameter ratio and the rib width-to-hydraulic diameter ratio, were selected for the optimization. The optimization was performed at Reynolds number, 20,000. Twenty-two design points were selected by Latin hypercube sampling, and the values of the objective function were evaluated by the RANS analysis at these points. Through optimization, the objective function value was improved by 22.6% compared to that of the reference geometry. Effects of the Reynolds number, rotation number, and buoyancy parameter on the heat transfer performance of the optimum design were also discussed.

Numerical Analysis of Heat Transfer in the Ribbed Channel Inserted with Tape (테이퍼가 설치된 리브(rib)이 있는 채널의 열전달에 대한 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.638-644
    • /
    • 2010
  • Numerical predictions of a fully developed turbulent flow through a square duct ($30mm{\times}30mm$) with twisted tape inserts and with twisted tape plus interrupted ribs are respectively conducted to investigate regionally averaged heat transfer and flow patterns. A rib height-to-channel hydraulic diameter(e/$D_h$) of 0.067 and a lengthto-hydraulic diameter(L/$D_h$) of 30 are considered at Reynolds number ranging 8,900 to 29,000. The interrupted ribs are axially arranged on the bottom wall. The twisted tape is 0.1 mm thick carbon steel sheet with diameter of 28 mm, length of 900 mm, and 2.5 turns. Each wall of the square channel is composed of isolated aluminum sections. Two heating conditions are investigated for test channels with twisted tape inserts and rib turbulators: (1) electric heat uniformly applied to four side walls of the square duct, and (2) electric heat uniformly applied to two opposite walls of the square channel. The results show that uneven surface heating enhances the heat transfer coefficient over uniform heating conditions, and significant improvements can be achieved with twisted tape inserts plus interrupted ribs.

NUMERICAL SIMULATION OF FLOW AND HEAT TRANSFER IN A COOLING CHANNEL WITH STAGGERED V-SHAPED RIBS (엇갈린 V-형 리브가 부착된 냉각유로에서의 열유동 수치해석)

  • Myong, H.K.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.107-113
    • /
    • 2008
  • The present study numerically simulates the flow and heat transfer characteristics of rib-induced secondary flow in a square cooling channel with staggered V-shaped ribs, extruded on both walls. The rib pitch-to-height ratio (p/h) varies from 2.8 to 10 with the rib-height-to-hydraulic diameter ration (h/$D_h$)of 0.07 and the Reynolds number of 50,000. Shear stress transport (SST) turbulence model is used as a turbulence model. Computational results show that complex secondary flow patterns are generated in the channel due to the snaking flow in the streamwise direction for all tested cases. In the range of p/h=5 to 10 the staggered V-shaped rib gives about 3 times higher heat transfer augmentation than the reference smooth pipe with high heat transfer on both front side and the area around the leading edge of the ribs, while the former cases give about 18 times higher streamwise pressure drop than the latter ones. However, for the thermal performances, based on the equal pumping power condition, the case of p/h=2.8 gives the best result among three cases, mainly due to relatively low streamwise pressure drop, although it gives relatively low heat transfer augmentation.