• 제목/요약/키워드: Square Cross-Section

검색결과 233건 처리시간 0.028초

내부앵커형 콘크리트 충전 기둥의 내력 및 변형능력에 관한 연구 (A Study on the Load Carrying Capacity and Deformation Capacity of the Internal Anchors Welded Cold Formed Concrete Filled Columns)

  • 김선희;염경수;최성모
    • 한국강구조학회 논문집
    • /
    • 제25권4호
    • /
    • pp.347-357
    • /
    • 2013
  • 최근, 콘크리트 충전강관 기둥(CFT)은 우수한 구조성능을 인정받아 현장적용이 활발하게 이뤄지고 있다. 한편 강재개발과 가격 상승으로 인해 단면을 효율적으로 사용하고자 하는 연구가 지속적으로 진행되고 있다. 본 연구실에서는 단면의 효율을 극대화 하기 위해 얇은 L형 플레이트 4개를 각형강관으로 형성한 단면을 제안한다. 이로 인해 강관 내부에 형성된 리브는 폭 중앙에 위치하고 있어 콘크리트와의 앵커역할이 가능하다. 또한 동일한 단면적을 갖는 일반 CFT기둥에 비해 우수한 좌굴내력과 변형성능이 발휘됨을 실험으로 평가되었다. 본 연구에서는 활용범위를 넓히고자 얇은 강판으로 조립된 신형상 기둥을 제안하며 구조적 성능을 재평가 하고자 한다. 실험 주요변수 폭두께비(b/t: 78,96,107) 이다. 실험결과 규준에서 제시하고 있는 폭두께비를 초과했음에도 내부에 설치된 리브의 앵커역할로 인해 충분한 내력을 발휘하며, 변형성능 향상에 유리한 것으로 분석되었다.

Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads

  • Ma, Hui;Xi, Jiacheng;Zhao, Yaoli;Dong, Jikun
    • Steel and Composite Structures
    • /
    • 제38권1호
    • /
    • pp.103-120
    • /
    • 2021
  • This research examines the eccentric compression performance of composite columns composed of recycled aggregate concrete (RAC)-filled square steel tube and profile steel. A total of 17 specimens on the composite columns with different recycled coarse aggregate (RCA) replacement percentage, RAC strength, width to thickness ratio of square steel tube, profile steel ratio, eccentricity and slenderness ratio were subjected to eccentric compression tests. The failure process and characteristic of specimens under eccentric compression loading were observed in detail. The load-lateral deflection curves, load-train curves and strain distribution on the cross section of the composite columns were also obtained and described on the basis of test data. Results corroborate that the failure characteristics and modes of the specimens with different design parameters were basically similar under eccentric compression loads. The compression side of square steel tube yields first, followed by the compression side of profile steel. Finally, the RAC in the columns was crushed and the apparent local bulging of square steel tube was also observed, which meant that the composite column was damaged and failed. The composite columns under eccentric compression loading suffered from typical bending failure. Moreover, the eccentric bearing capacity and deformation of the specimens decreased as the RCA replacement percentage and width to thickness ratio of square steel tube increased, respectively. Slenderness ratio and eccentricity had a significantly adverse effect on the eccentric compression performance of composite columns. But overall, the composite columns generally had high-bearing capacity and good deformation. Meanwhile, the mechanism of the composite columns under eccentric compression loads was also analysed in detail, and the calculation formulas on the eccentric compression capacity of composite columns were proposed via the limit equilibrium analysis method. The calculation results of the eccentric compression capacity of columns are consistent with the test results, which verify the validity of the formulas, and the conclusions can serve as references for the engineering application of this kind of composite columns.

큰 정각재의 가열판과 고주파 진공건조간 건조특성의 비교 (Comparison of Drying Characteristics of Square Timber by Heated Platen and Radio-frequency/Vacuum Drying)

  • 정희석;강욱;이철현
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권2호
    • /
    • pp.108-114
    • /
    • 2002
  • 변장 14.0 cm와 16.5 cm인 소나무 정각재의 가열판진공건조와 고주파진공건조간의 건조속도, 함수율분포와 비(比)에너지를 비교하였다. 고주파진공건조는 가열판진공건조보다 건조속도 및 변장이 건조속도에 미치는 영향이 컸었다. 가열판진공건조 목재의 재장방향, 두께방향과 폭방향의 함수율분포는 볼록 형태를 나타내었고, 고주파진공건조 목재는 오목 형태를 나타내었다. 가열판진공건조 목재의 폭방향과 두께방향간의 수분경사는 유사하였으나 고주파진공건조 목재의 경우는 폭방향의 수분경사가 두께방향보다 완만하였다. 가열판진공건조와 고주파 진공건조의 비(比)에너지곡선은 함수율이 감소할수록 증가하는 경향을 나타내었고, 가열판진공건조의 비(比)는 고주파진공건조보다 컸었다.

Characteristics of the aerodynamic interference between two high-rise buildings of different height and identical square cross-section

  • Dongmei, Huang;Xue, Zhu;Shiqing, He;Xuhui, He;Hua, He
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.501-528
    • /
    • 2017
  • In this work, wind tunnel tests of pressure measurements are carried out to assess the global aerodynamic interference factors, the local wind pressure interference factors, and the local lift spectra of an square high-rise building interfered by an identical cross-sections but lower height building arranged in various relative positions. The results show that, when the interfering building is located in an area of oblique upstream, the RMS of the along-wind, across-wind, and torsional aerodynamic forces on the test building increase significantly, and when it is located to a side, the mean across-wind and torsional aerodynamic forces increase; In addition, when the interfering building is located upstream or staggered upstream, the mean wind pressures on the sheltered windward side turn form positive to negative and with a maximum absolute value of up to 1.75 times, and the fluctuating wind pressures on the sheltered windward side and leading edge of the side increase significantly with decreasing spacing ratio (up to a maximum of 3.5 times). When it is located to a side, the mean and fluctuating wind pressures on the leading edge of inner side are significantly increased. The three-dimensional flow around a slightly-shorter disturbing building has a great effect on the average and fluctuating wind pressures on the windward or cross-wind faces. When the disturbing building is near to the test building, the vortex shedding peak in the lift spectra decreases and there are no obvious signs of periodicity, however, the energies of the high frequency components undergo an obvious increase.

덕트내 요철의 단락위치 변화에 따른 열/물질전달 및 압력강하 특성 - 정렬 단락배열 요철 - (Heat/Mass Transfer and Friction Characteristic in a Square Duct with Various Discrete Ribs -In-Lined Gap Arrangement Ribs-)

  • 이세영;최청;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1640-1649
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements on heat/mass transfer in the cooling passage of gas turbine blades. A complex flow structure occurs in the cooling passage with rib turbulators which promote heat transfer on the wall. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. A numerical computation is performed using a commercial code to calculate the flow structures and experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. A square channel (50 mm $\times$ 50 mm) with rectangular ribs (4 mm $\times$ 5 mm) is used fur the stationary duct test. The experiments focus on the effects of rib arrangements and gap positions in the discrete ribs on the heat/mass transfer on the duct wall. The rib angle of attack is 60°and the rib-to-rib pitch is 32 mm, that is 8 times of the rib height. With the inclined rib angle of attack (60°), the parallel rib arrangements make a pair of counter rotating secondary flows in the cross section, but the cross rib arrangements make a single large secondary flow including a small secondary vortex. These secondary flow patterns affect significantly the heat/mass transfer on the ribbed wall. The heat/mass transfer in the parallel arrangements is 1.5 ∼2 times higher than that in the cross arrangements. However, the shifted rib arrangements change little the heat/mass transfer from the inline rib arrangements. The gap position in the discrete rib affects significantly the heat/mass transfer because a strong flow acceleration occurs locally through the gap.

마산만의 해수유동에 관하여 (Variability of Current Velocities in Masan Inlet)

  • 김종화;장선덕;김삼곤
    • 한국수산과학회지
    • /
    • 제19권3호
    • /
    • pp.274-280
    • /
    • 1986
  • 대, 소조기에 마산만에서 연속관측한 자료를 사용하여 만구 단면의 유속 변동특성을 구명하기 위하여 net velocity와 RMS속도의 등양선 및 순 유출입량을 계산하여 검토하였다. 최강유속은 수도 중앙과 서부의 4m 이하의 표층에서 나타나고, 최대 유입속도 24cm/sec 최대 유출속도는 15 cm/sec이다. 최강유속 시간임에도 불구하고 4m 이심에서는 유속이 약하여 $0{\sim}2cm/sec$에 불과하다. 만구 단면의 가장자리의 상층에 역류가 존재한다. net velocity는 비가 오지 않은 대조기의 경우 유출유속은 만구단면 서부에서 나타나며, 유입유속은 단면 동부에서 나타난다. 비온 직후의 소조기에는 이와 정반대로 흐른다. RMS속도의 최대 세기는 대조기에 $11.3{\sim}15.0cm/sec$, 소조기에 $7{\sim}10.3cm/sec$로서 단면 서부의 표층에 있으며, 매 조석주기마다 거의 동일위치에서 계속 존재한다. 순 통과유량은 건기에 $-39.7m^3/sec$, 우기 $-170m^3/sec$로서 유출이 탁월하다. 항유성분은 건기에는 조석잔차류가 우세하지만, 소조기의 강우시에는 밀도류가 우세한 것으로 추리된다.

  • PDF

Application of TULIP/STREAM code in 2-D fast reactor core high-fidelity neutronic analysis

  • Du, Xianan;Choe, Jiwon;Choi, Sooyoung;Lee, Woonghee;Cherezov, Alexey;Lim, Jaeyong;Lee, Minjae;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1871-1885
    • /
    • 2019
  • The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast reactors play an important role in the generation-IV concept, it was decided that the code should be upgraded for the analysis of fast neutron spectrum reactors. This paper presents a coupled code - TULIP/STREAM, developed for the fast reactor assembly and core calculations. The TULIP code produces self-shielded multi-group cross-sections using a one-dimensional cylindrical model. The generated cross-section library is used in the STREAM code which solves eigenvalue problems for a two-dimensional assembly and a multi-assembly whole reactor core. Multiplication factors and steady-state power distributions were compared with the reference solutions obtained by the continuous energy Monte-Carlo code MCS. With the developed code, a sensitivity study of the number of energy groups, the order of anisotropic PN scattering, and the multi-group cross-section generation model was performed on the keff and power distribution. The 2D core simulation calculations show that the TULIP/STREAM code gives a keff error smaller than 200 pcm and the root mean square errors of the pin-wise power distributions within 2%.

Practical resolution of angle dependency of multigroup resonance cross sections using parametrized spectral superhomogenization factors

  • Park, Hansol;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1287-1300
    • /
    • 2017
  • Based on the observation that ignoring the angle dependency of multigroup resonance cross sections within a fuel pellet would result in nontrivial underestimation of the spatial self-shielding of flux, a parametrized spectral superhomogenization (SPH) factor library (PSSL) method is developed as a practical means of resolving the problem. Region-wise spectral SPH factors are calculated by the normal and transport corrected SPH iterations after ultrafine group slowing down calculations over various light water reactor pin-cell configurations. The parametrization is done with fuel temperature, U-238 number density, fuel radius, moderator source represented by ${\Sigma}_{mod}V_{mod}$, and the number density ratio of resonance nuclides to that of U-238 in a form of resonance interference correction factors. The parametrization is successful in that the root mean square errors of the interpolated SPH factors over the fuel regions of various pin-cells are within 0.1%. The improvement in reactivity error of the PSSL method is shown to be superior to that by the original SPH method in that the reactivity bias of -200 pcm to -300 pcm vanishes almost completely. It is demonstrated that the environment effect takes only about 4% in the reactivity improvement so that the pin-cell based PSSL method is effective in the assembly problems.

100MPa급 초고강도 원심성형 콘크리트의 내구성 평가를 위한 실험연구 (Experimental Study to Evaluate the Durability of 100 MPa Class Ultra-high Strength Centrifugal Molding Concrete)

  • 김정회;김성진;이두성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권1호
    • /
    • pp.12-23
    • /
    • 2024
  • 본 연구에서는 원심성형 기법을 이용하여 구조용 콘크리트 각형보를 개발하였으며, 단면의 휨강성을 확보하기 위하여 단면의 중공률은 10 %이하로 하며 이를 위하여 기존의 빈배합상태의 콘크리트가 아닌 고슬럼프(150~200)의 물성을 갖으며 설계강도가 100 MPa이상인 콘크리트 배합비를 개발하여 적용하였다. 피암터널이나 라멘소교량의 상부구조로 활용될 원심성형 PSC 각형보의 내구성을 조사하기 위하여 압축⧵강도 100 MPa급 초고강도 원심성형 콘크리트의 열화 및 내화학적 특성에 대한 내구성능을 평가하였다. 2022년과 2023년에 제작한 원심 성형 각형보 시험체에 대하여 염화물침투 저항성, 촉진탄산화 , 황산염침식 저항성, 동결융해 저항성, 스케일링 저항성 등 콘크리트의 내구성 시험을 수행하였다. 본 연구에서 검증한 내용을 고려해 볼 때 추후 제작단계에서 수밀성이 높아지는 원심성형 콘크리트의 내구성은 일반적인 콘크리트에 비해 우수한 것으로 조사되었다.

공기유동에 대한 고온상태의 비원형 도과내에서의 열전달 및 압력강하의 측정 (Measurement of Heat Transfer and Friction Coefficients for Flow of Air in Noncircular Ducts At High Surface Temperatures.)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.552-562
    • /
    • 2001
  • Measurement of average of heat transfer and friction coefficients were obtained with air flowing through electrically heated ducts having square, rectangular(aspect ration, 5), and triangular cross section for range of surface temperature from $540^{\circ}$to $1780^{\circ}$ R and Reynolds number from 1000 to 330,000. The results indicates that the effect of heat flux on correlations of the average heat transfer and friction coefficients is similar to that obtained for circular tubes in previous investigation and was nearly eliminated by evaluating the physical properties and density of the air a film temperature halfway between the average surface and fluid bulk temperatures, With the Nusselt and Reynolds numbers on the hydraulic diameter of the ducts, the data for the noncircular ducts could be represented by the same equations obtained in the previous investigation for circular tubes. Correlation of the average difference between the surface corner and midwall temperatures for the square duct was in agreement with predicted values from a previous analysis. However, for the rectangular and triangular ducts, the measured corner temperature was greater by approximately 20 and 35 percent, respectively, than the values predicted by analysis.

  • PDF