• Title/Summary/Keyword: Sputter source

Search Result 50, Processing Time 0.025 seconds

Verified Deep Learning-based Model Research for Improved Uniformity of Sputtered Metal Thin Films (스퍼터 금속 박막 균일도 예측을 위한 딥러닝 기반 모델 검증 연구)

  • Eun Ji Lee;Young Joon Yoo;Chang Woo Byun;Jin Pyung Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.113-117
    • /
    • 2023
  • As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.

  • PDF

Study on the Development of RF Magnetron Sputter-Deposition System(I) (RF마그네트론 스퍼터 증착장치 개발연구(I))

  • Kim, Hee-Je;Moon, Dek-Soi;Jin, Yun-Sik;Lee, Hong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.612-614
    • /
    • 1993
  • Sputtering requires a way to bombard the target with sufficient momentum. Positive ions are the most convenient source since their energy and momentum can be controlled by applying a potential to the target. Although many types of discharges have been used for sputtering, magnetrons are now the most widely used because of the high ion current densities. Namely, plasma near the target electrode is confined by magnetic field using permanent magnet, so that the collision probability is increased. It is important to develop RF magnetron sputtering system which has many excellent merits compared with conventional methods. Our study aims to develop 1 kW RF source(13.56 MHz, TR type) and to accumulate the design and construction technology of RF magnetron sputter-deposition system. We developed 1 kW RF sputtering system to deposit thin film. These films are deposited by this RF source matched by auto-matching system using primarily argon gas. Target of Au, Ni, Al, and $SiO_2$ was well deposited on the argon pressure of 5-10 mTorr.

  • PDF

Three-dimensional Self-consistent Particle-in-cell and Monte Carlo Collisional Simulation of DC Magnetron Discharges

  • Kim, Seong-Bong;Chang, Hyon-U;Yoo, Suk-Jae;Oh, Ji-Young;Park, Jang-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.526-526
    • /
    • 2012
  • DC magnetron discharges were studied using three-dimensional self-consistent particle-in-cell and Monte Carlo collisional (PIC-MCC) simulation codes. Two rectangular sputter sources (120 mm * 250 mm and 380 mm * 200 mm target sizes) were used in the simulation modeling. The number of incident ions to the Cu target as a function of position and simulation time was obtained. The target erosion profile was calculated by using the incident ions and the sputtering yields of the Cu target calculated with SRIM codes. The maximum ion density of the ion density distribution in the discharge was about $10^{10}cm^{-3}$ due to the calculation speed limit. The result may be less than one or two order of magnitude smaller than the real maximum ion density. However, the target erosion profiles of the two sputter sources were in good agreement with the measured target erosion profiles except for the erosion profile near the target surface, in which which the measured erosion width was broader than the simulation erosion width.

  • PDF

Properites of transparent conductive ZnO:Al film prepared by co-sputtering

  • Ma, Hong-Chan;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.106-106
    • /
    • 2009
  • Al-doped ZnO (AZO) thin films were grown on glass substrates by co-sputtering at room temperature. We made ZnO and Al target and ZnO:Al film is deposited with sputter which has two RF gun source. The Al content was controlled by varying Al RF power and effect of Al contents on the properties of ZnO:Al film was investigated. Crystallinity and orientation of the ZnO:Al films were investigated by X-ray diffraction (XRD), surface morphology of the ZnO:Al films was observed by atomic force microscope. Electrical properties of the ZnO:Al films were measured at room temperature by van der Pauw method and hall measurement. Optrical properties of ZnO:Al films were measured by UV-vis-NIR spectrometer.

  • PDF

A Study on the Relationships between Substrate Bias Potential and Ion Energy Distributions (이온 플레이팅에서 기판 BIAS 전위와 이온 에너지 분포와의 상관관계 연구)

  • Sung, Y.M.;Shin, J.H.;Son, J.B.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.472-474
    • /
    • 1995
  • A Sputter ion Plating(SIP) system with a r.f. coil electrode and the Facing Target Sputter(FTS) source was designed for high-quality thin film formation. The rf discharge was combined with DC facing target sputtering in order to enhance ionization degree of a sputtered atoms. The energy of ions incident on the substrate depended on the health potential of DC biased substrate. The mean impact ion energy increased with negative bias voltage and rf power. The adhesive force of the TiN film formed was in the range of 30$\sim$50N, and markedly influenced by substrate bias voltage.

  • PDF

이온소스 Cathode 형태가 이온 빔에 미치는 영향

  • Min, Gwan-Sik;Lee, Seung-Su;Yun, Ju-Yeong;Jeong, Jin-Uk;O, Eun-Sun;Hwang, Yun-Seok;Kim, Jin-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.145.1-145.1
    • /
    • 2014
  • 변형된 end-Hall type의 이온 소스를 사용하여 이온 소스의 형태에 따라 달라지는 이온 빔의 변화를 측정하였다. 이온 소스 cathode의 wehnelt mask를 세 가지 종류로 제작하였으며, 생성된 이온 빔을 이용하여 Al이 sputter 방식으로 증착된 유리 기판을 etching 하였다. 실험 결과 wehnelt mask의 모양에 따라 focus, broad, strate의 형태로 이온 빔이 생성되는 것을 확인하였다. Al이 증착된 유리 기판의 제작을 위하여 Al target을 사용하여 RF power로 150 W, 2분간 sputtering을 하였고, 이온 소스와 기판사이의 거리를 1 cm씩 증가시켜가며 이온 빔을 2,500 V로 3분간 유리 기판을 etching한 후, 유리 기판이 etching된 모양을 통해 이온 빔의 형태를 분석하였다. 본 연구를 위하여 sputtering과 이온 빔 처리가 가능한 챔버를 제작하였으며, scroll pump와 turbo molecular pump를 사용하였다. Base pressure $1.5{\times}10^{-6}Torr$에서 실험이 진행되었고, 불활성 기체 Ar을 사용하였다. Ar 기체를 주입시 pressure는 $2.6{\times}10^{-3}Torr$였다.

  • PDF

Fundamental characteristics of non-mass separated ion beam deposition with RE sputter-type ion source (고주파 스퍼터타입 이온소스를 이용한 비질량분리형 이온빔증착법에 관한 특성연구)

  • ;Minoru Isshiki
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.136-143
    • /
    • 2003
  • In this paper, high purity RF sputter-type ion source for non-mass separated ion beam deposition was evaluated. The fundamental characteristics of the ion source which is composed of an RF Cu coil and a high purity Cu target (99.9999 %) was studied, and the practical application of Cu thin films for ULSI metallization was discussed. The relationship between the DC target current and the DC target voltage at various RF power and Ar gas pressures was measured, and then preparation conditions for Cu thin films was described. As a result, it was found that the deposition conditions of the target voltage, the target current and the Ar pressure were optimized at -300 V, 240 W and 9 Pa, respectively. The resistivity of Cu films deposited at a bias voltage of -50 V showed a minimum value of 1.8 $\pm$ 0.1 $mu\Omega$cm, which is close to that of Cu bulk (1.67 $mu\Omega$cm).

Vacuum Web-coater with High Speed Surface Modification Equipment for fabrication of 300 mm wide Flexible Copper Clad Laminate (FCCL) (초고속 대면적 표면 처리 장치가 부착된 300 mm 폭 연성 동박적층 필림 제작용 진공 웹 코터)

  • Choi, H.W.;Park, D.H.;Kim, J.H.;Choi, W.K.;Sohn, Y.J.;Song, B.S.;Cho, J.;Kim, Y.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2007
  • Prototype of $800{\ell}$ vacuum web coater (Vic Mama) consisting of ion source with low energy less than 250 eV for high speed surface modification and 4 magnetron sputter cathodes was designed and constructed. Its performance was evaluated through fabricating the adhesiveless flexible copper clad laminate (FCCL). Pumping speed was monitored in both upper noncoating zone pumped down by 2 turbo pumps with 2000 l/sec pumping speed and lower surface modification and sputter zone vacuumed by turbo pumps with 450 1/sec and 1300 1/sec pumping speed respectively. Ion current density, plasma density, and uniformity of ion beam current were measured using Faraday cup and the distribution of magnetic field and erosion efficiency of sputter target were also investigated. With the irradiation of ion beams on polyimide (Kapton-E, $38{\mu}m$) at different fluences, the change of wetting angle of the deionized water to polyimide surface and those of surface chemical bonding were analyzed by wetting anglometer and x-ray photoelectron spectroscopy. After investigating the deposition rate of Ni-Cr tie layer and Cu layer was investigated with the variations of roll speed and input power to sputter cathode. FCCL fabricated by sputter and electrodeposition method and characterized in terms of the peel strength, thermal and chemical stability.

Discharge Characteristics of Facing Targets Sputtering Apparatus with Targets Species (타켓 종류에 따른 대향타겟 스퍼터링 장치의 방전 특성)

  • Keum, Min-Jong;Son, In-Hwan;Shin, Sung-Kwan;Ga, Ch-Hyun;Park, Yong-Seo;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.620-623
    • /
    • 2004
  • In this study, the discharge characteristic of FTS (Facing Targets Sputtering) apparatus was investigated using metal target paramagnetic and ceramic targets such as Zn, Al, $ZnO:Al(Al_2O_3)$, ITO. Threshold voltage and stable stage of discharge show different with target species. Compare with commercial sputtering apparatus, the FTS apparatus is a high-speed sputter method that promotes ionization of sputter gas by screw and reciprocate moving high-speed ${\gamma}$electrons which arrays two targets facing each other, inserts plasma arresting magnetic field to the parallel direction of the center axis of both targets, discharged from targets and accelerated at the cathode falling area. Especially, we notice that the FTS method using ceramic target has stable discharge characteristic even by DC power source.

  • PDF