• Title/Summary/Keyword: Spun High Strength Concrete

Search Result 30, Processing Time 0.021 seconds

Study on the Development of High Strength Admixture using Paper Sludge Ash (제지 애쉬를 사용한 고강도 혼화재 개발에 관한 연구)

  • 이재환;서형남;김창률;민경소
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.87-92
    • /
    • 1998
  • The purpose of this study is to use paper sludge ash as a material in manufacturing high strength admixture. The reactivity of paper sludge ash as iteself is low for the crystallized non-reactive $SiO_2$, but when the $SiO_2$ was removed, the phase component is mainly composed of glass phase which could react with cement hydrates. In this study, we manufactured high strength admixture using separated paper sludge ash, and examined the strength of mortar, spun concrete with and without this high strength admixture in steam curing. The strength of spun concrete with high strength admixture including paper sludge ash was more higher than that of spun concrete without admixture. As a result, it was found that paper sludge ash could be used to a pozzolanic material in manufacturing high strength admixture.

  • PDF

An Experimental Study of the Segregated Layers of Materials for Pretensioned Spun High Strength concrete Pile (PHC 파일의 재료분리층에 대한 실험연구)

  • 이성로;강성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.148-152
    • /
    • 2000
  • The experimental study was performed to investigate the effects of centrifugal condition on the segregated layers of materials and the compressive strength of concrete for pretensioned spun high strength concrete (PHC) pile. The considering factors in the test were the centrifugal time and the magnitude of centrifugal force. These factors have been found to have found to have the great influence on the segregation and the concrete strength. The moderate centrifugal condition has to be fitted for the quality assurance in the production of PHC pile, especially to provide the adequate concrete cover over the tendons.

  • PDF

Flexural Performance of Enhanced Spun High Strength RC Piles (원심성형 고성능 철근콘크리트 말뚝의 휨 성능 연구)

  • Hwang, Hoonhee;Bae, Jaehyun;Joo, Sanghoon;Kwon, Euisung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.52-57
    • /
    • 2018
  • The pile construction method is changing from the pile driving operation to the injected precast pile method. It is to prevent environmental damage and to minimize complaints caused by noise. Therefore, economic alternatives optimized for the injected precast pile method are required. In this study, the enhanced spun reinforced concrete piles manufactured by high strength materials were proposed. Experimental tests were conducted to evaluate their structural safety and nonlinear finite element analysis was performed to improve the reliability of experimental results. The experimental results and the analytical results were in good agreement with each other and the proposed enhanced spun reinforced concrete pile has better performance than that required by the design. However, the performance of the joint using the existing method used in the PHC pile was considered to be insufficient.

Experimental Study on Segregated Layers of Materials and Compressive Strength of Concrete for Pretensioned Spun High Strength Concrete Pile (PHC 파일의 압축강도와 재료분리층에 대한 실험연구)

  • 이성로;강성수;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Pretensioned spun high strength concrete (PHC) pile has to be quality-controlled and provided an adequate concrete cover to assure high load carrying capacity, impact resistance, economy, and durability. During spun pre-casting, the pile section is divided into several segregated layers such as laitance, paste, mortar, and concrete layers. Greater the thickness of segregated layers, more difficult it is to guarantee the capacity and the durability of PHC pile. The experimental study was performed to investigate the effects of centrifugal condition on the segregated layers of materials and the compressive strength of concrete for PHC pile. The considering factors in the test were centrifugal time and magnitude of centrifugal force. These factors have been found to have greater influence on the segregation than the concrete strength. The moderate centrifugal condition has to be considered to maintain quality assurance in the production of PHC pile, especially to provide the adequate concrete cover over its tendons.

Fundamental Study for Extension of Application of Recycled Concrete Aggregate: Spun High Strength Concrete (순환골재의 사용성 확대를 위한 연구: 원심력콘크리트로의 적용)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Hyun-Jung;Kim, Taeg-Wang;Lee, Man-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.103-112
    • /
    • 2006
  • Along with recent improvement of recycling technique, the quality of the recycled concrete aggregate have become very competitive to the natural concrete aggregate. Therefore, a practical use of the recycled concrete aggregate may be possible for structural members. Majority studies about the recycled concrete aggregate was emphasized a limitation of fundamental study concerned with a strength characteristics and durability of the recycled aggregate concrete, there is use for the structural members. Therefore, for the extension of application of recycled concrete aggregate, this investigation verifies the strength characteristics recycled concrete aggregate of the spun-concrete products with various coarse and fine recycled aggregate replacement ratio(coarse recycled aggregate: 0%, 20%, 40%, 60%, 100%; fine recycled aggregate: 0%, 30%, 60%, 100%) and with addition of cellulose fibers(0%, 0.01%, 0.03%, 0.05%, 0.08%). From the test results, The strength of spun concrete used with recycled aggregate [NR specimen], was measured as 72MPa, was found to be very approximately to the strength of spun concrete used with the natural aggregate(NN specimen), was measured as 74MPa, when only fine aggregate was replaced with the recycled. Therefore, the fine recycled concrete aggregate can be successfully used in the spun high strength concrete product. The compressive strength of all specimens used the specialty cellulose fiber were measured as about 70M Pa, however, the increasement of the specialty cellulose fiber content is showed to decrease compressive strength of spun concrete. Therefore, it is anticipated that the specialty cellulose fiber can be applied to the various spun concrete products.

  • PDF

A Study on the Mechanical Properties of HPC Pile Using Steel Fiber (강섬유를 혼입한 HPC Pile의 역학적 특성에 관한 연구)

  • 박승범;신동기;박병철;권혁준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.365-372
    • /
    • 1997
  • This study is aimed for manufacturing a High performance Concrete(HPC) Pile as using steel fibers, investigation the mechanical properties of HPC Pile and proposition the potential application. At this study. We found that mechanical properties(cracking moment and fracture moment) of Pretensioned spun High strength Concrete (PHC) Pile using steel fibers is much superior to without steel fibers. Therefore. we think that using steel fibers in Concrete Pile is to progress flexural strength energy absorption capacity and post-cracking resistance.

  • PDF

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

An Experimental Study on the Physical Properties of High Strength Concrete Used by High Calcium Sulfate Cement (고황산염 시멘트를 이용한 고강도 콘크리트의 압축강도 특성에 관한 실험적 연구)

  • 박승범;임창덕
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.3
    • /
    • pp.135-146
    • /
    • 1992
  • 프리텐션 방식 원심력 고강도콘크리트 말뚝이 KS F4306 규격에 제정되어 콘크리트의 압축강도가 800kg/$ extrm{cm}^2$ 이상의 제조가 불가한 실정이 것으로 평가 된다. 따라서 본 연구에서는 고강도콘크리트 말뚝 제조에 적용하기 위한 고황산염 시멘트의 실험적 연구로써 석고계 첨가량 및 단위 시멘트량 변화가 증가양생 콘크리트의 제 강도 특성에 미치는 영향을 규명하는데 목적이 있다. 연구결과로부터 석고첨가량이 증대하면 콘크리트강도가 향상되지만, 7.5% 이상 첨가시에는 오히려 강도 저하현상이 나타나는 것으로 분석되었으며, 특히 단위 시멘트량 변화에 따른 압축강도 영향은 그다지 크지 않은 것으로 나타났다. 한편 최고 압축강도 발현은 석고첨가량 5~7.5% 첨가와 단위시멘트량 500~540kg/㎥ 조건에서 800kg/$\textrm{cm}^2$ 이상의 고강도 콘크리트 제조가 가능함을 확인하였다.