• Title/Summary/Keyword: Spring link

Search Result 81, Processing Time 0.03 seconds

Compliance Control of a Direct-Drive Manipulator using Phase-Difference of Ultrasonic Motor (초음파 모터의 위상차를 이용한 직접구동 매니퓰레이터의 컴플라이언스 제어)

  • 오금곤;김대현;김영동;김재민
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.608-615
    • /
    • 1999
  • In this paper, the compliance control method was propoSL'Cl and the phase-difference operating principle of an u ultrasonic motor described. The compliance control can he implementtcD with spring/damper properties of the r musculo-skeletal system of the actual limb in controlling its net configuration and movement. The proposed p phase-difference driving scheme is verifitcD through the computer simulation. Also, $textsc{k}$rformance of the proposed c control method of a two-link direct-drive manipulator are examinLD by the experimental results with resptc'Ct to s spring/ damper properties.

  • PDF

Nano Force Metrology and Standards (나노 힘 측정 및 표준)

  • Kim M.S.;Park Y.K.;Choi J.H.;Kim J.H.;Kang D.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.59-62
    • /
    • 2005
  • Small force measurements ranging from 1 pN to $100{\mu}N$, we call it Nano Force, become the questions of common interests of biomechanics, nanomechanics, material researches, and so on. However, unfortunately, quantitative and accurate force measurements have not been taken so far. This is because there ,are no traceable force standards and a calibration scheme. This paper introduces a quantitative force metrology, which provides traceable link to SI (International Systems of Units). We realize SI traceable force ranging from 1 nN to $100{\mu}N$ using an electrostatic balance and disseminate it through transfer standards, which are self-sensing cantilevers that have integrated piezoresistive strain gages. We have been built a prototype electrostatic balance and Nano Force Calibrator (NFC), which is an AFM cantilever calibration system. As a first experiment, we calibrated normal spring constants of commercial AFM cantilevers using NFC. Calibration results show that the spring constants of them are quite differ from each other and nominal values provided by a manufacturer (up to 240% deviation).

  • PDF

Development of 3 D.O.F parallel robot's simulator for education

  • Yoo, Jae-Myung;Kim, John-Hyeong;Park, Dong-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2290-2295
    • /
    • 2005
  • In this paper, it is developed simulator system of 3 D.O.F parallel robot for educate of expertness. This simulator system is composed of three parts ? 3 D.O.F parallel robot, controller (hardware) and software. First, basic structure of the robot is 3 active rotary actuator that small geared step motor with fixed base. An input-link is connected to this actuator, and this input-link can connect two ball joints. Thus, two couplers can be connected to the input-link as a pair. An end-plate, which is jointed by a ball joint, can be connected to the opposite side of the coupler. A sub-link is produced and installed to the internal spring, and then this sub-link is connected to the upper and bottom side of the coupler in order to prevent a certain bending or deformation of the two couplers. The robot has the maximum diameter of 230 mm, 10 kg of weight (include the table), and maximum height of 300 mm. Hardware for control of the robot is composed of computer, micro controller, pulse generator, and motor driver. The PC used in the controller sends commands to the controller, and transform signals input by the user to the coordinate value of the robot by substituting it into equations of kinematics and inverse kinematics. A controller transfer the coordinate value calculated in the PC to a pulse generator by transforming it into signals. A pulse generator analyzes commands, which include the information received from the micro controller. A motor driver transfer the pulse received from the pulse generator to a step motor, and protects against the over-load of the motor Finally, software is a learning purposed control program, which presents the principle of a robot operation and actual implementation. The benefit of this program is that easy for a novice to use. Developed robot simulator system can be practically applied to understand the principle of parallel mechanism, motors, sensor, and various other parts.

  • PDF

Characteristics of V-belt type continuously variable unit (V-벨트형 무단변속기구의 성능실험)

  • 김연수;박재민;이상희;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.822-825
    • /
    • 2004
  • Continuously variable transmission (CVT) mechanisms considered here is a V-belt drive with two variable-diameter pulleys and effective diameters. One pulley was set by a mechanical link while the other was spring-loaded to provide automatic correspondence. The center distance between the two variable-diameter pulleys was fixed. Experimental studies were executed to analyze efficiencies as change of its speed ratio.

  • PDF

An experimental study on the human upright standing posture exposed to longitudinal vibration

  • Shin, Young-Kyun;Arif Muhammad;Inooka Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.77.2-77
    • /
    • 2002
  • Human upright standing posture in the sagittal plane is studied, when it exposed in the antero-posterior vibration. A two link inverted pendulum model is considered and described its functional behavior in terms of ankle and hip joint according to the dominant joints that provides the largest contribution to the corresponding human reactionary motion. The data is analyzed, both in the time domain and the frequency domain. Subjects behave as a non-rigid pendulum with a mass and a spring throughout the whole period of the platform motion. When vision was allowed, each segment of body shows more stabilized.

  • PDF

Finite element analysis of shear critical prestressed SFRC beams

  • Thomas, Job;Ramaswamy, Ananth
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.65-77
    • /
    • 2006
  • This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interface. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. The capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in prestressed concrete beam has been illustrated.

Fast and Safe Contact Establishment Strategy for Biped Walking Robot (이족 보행 로봇을 위한 빠르고 안전한 접촉 생성 전략)

  • Lee, Hosang;Jung, Jaesug;Ahn, Junewhee;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.147-154
    • /
    • 2021
  • One of the most challenging issues when robots interact with the environment is to establish contact quickly and avoid high impact force at the same time. The proposed method implements the passive suspension system using the redundancy of the torque-controlled robot. Instead of utilizing the actual mechanical compliance, the distal joints near the end-effector are controlled to act as a virtual spring-damper system with low feedback gains. The proximal joints are precisely controlled to push the mid-link, which is defined as the boundary link between the proximal and distal joints, towards the environment with high feedback gains. Compared to the active compliance methods, the contact force measurements or estimates are not required for contact establishment and the control time delay problems do not occur correspondingly. The proposed method was applied to the landing foot control of the 12-DoF biped robot DYROS-RED in the simulations. In the results, the impact force during landing was significantly reduced at the same collision speed.

Design of Heavy Weight Door Hinge for Built-in Appliances (빌트인 가전기기용 고 중량 도어힌지의 설계에 관한 연구)

  • Choi, Seong-Dae;Byn, Yong-Kun;Kim, Gi-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.41-47
    • /
    • 2021
  • In this study, the hinges of heavy weight doors were designed and analyzed in line with the trend that built-in appliances are becoming larger and the weight of doors is also increasing. The main specification of the heavy weight door hinge is to allow the deflection at the end of the door to be less than 2 mm when opening and closing, including the automatic closing, slow closing, and closing force control functions. The structural analysis of the design mechanism, component design, and methods for improving the deflection are as follows: 1) Mechanism of the automatic closing function should sense automatically using the spring compression force at a specific angle by the contact between the cam and the cam module roller. 2) Through structural analysis, the maximum stress of the door was found in the link pin hole connected to the pin at each link. 3) Consequently, the pin holder was designed and applied, with little variance, but up to 93% of the specification limit.

Zooplankton Grazing on Bacteria and Factors Affecting Bacterial C-flux in Lake Paldang Ecosystem (팔당호 생태계에서 동물플랑크톤의 박테리아 섭식 및 영향인자)

  • Uhm, Seong-Hwa;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.424-434
    • /
    • 2006
  • This study investigates bacteria-zooplankton grazing link and factors affecting their grazing relationship at trophically different two sites (Paldang Dam and Kyungan Stream) of Lake Paldang Ecosystem from April to December, 2005. Zooplankton were divided into two size groups; microzooplankton (MICZ) : 60-200 ${\mu}m$ and macrozooplankton (MACZ): >200 ${\mu}m$), and their grazing rates on bacteria were conducted for each size group separately. Bacterial abundance and seasonal change pattern were similar between two sites. MICZ, mostly rotifers (e.g., Brachionus, Keratella, Polyathra) were numerically dominant at both sites, while carbon biomass was highest in cladocerans. Zooplankton biomass was higher at the Kyungan Steam site compared to Paldang Dam site, and their high biomass during spring decreased as they were passing through the storm events in summer season at both sites. Zooplankton clearance rate (CR) was high in spring and autumn while low in summer at Paldang Dam site. However, zooplankton CR was high during the summer at Kyungan Stream site. Bacterial C-flux was high in spring and autumn when MACZ (esp. cladecerans) developed at a high biomass level at both sites. Overall, MACZ community CR and carbon flux (C-flux) were higher than those of MICZ, and the degree of difference between them was higher at Kyungan Stream site. Short hydraulic residence time and physical disturbance caused by summer storm event appeared to affect the zooplankton grazing on bacteria at both sites. The results of this study indicate that bacteria are potentially important carbon source of zooplankton, and that both biotic (e.g,, prey and predator taxa composition and abundance) and physical parameters appear to alter energy transfer in the planktonic food web of this river-reservoir hybrid system.

Structural Analysis using Equivalent Models of Active Control Devices (능동형 제진장치의 등가모델을 이용한 구조해석)

  • Park, Ji-Hun;Yun, Soo-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.339-346
    • /
    • 2012
  • In this paper, equivalent models for active control devices are proposed so that building structures with such devices are analyzed using commercial structural analysis programs for the assessment of the structural members under active vibration control. Equivalent link models represent active control device with a virtual linear spring and dashpot, and equivalent force models are control force history acting at the installation point in structural models. Active controllers are designed based on the reduced-order models for a vertical cantilever model and a high-rise building model and corresponding equivalent models are determined from control gain matrices. Based on acceleration, displacement and member force responses, the effectiveness of the equivalent models is verified. As a result, proposed equivalent models, of which equivalent link model showed better performance, appear to enable detailed investigation of structural behavior to the extent of member force level.