• Title/Summary/Keyword: Spring Road

Search Result 158, Processing Time 0.282 seconds

Preference Analysis of General Adult on the Forest and Forest Road for the Development of Forest Therapy Program (산림치유 프로그램 개발을 위한 일반 성인의 숲과 숲길의 선호도 분석)

  • Kim, Youn-Hee;Kim, Dong-Jun;Yeoun, Pyung-Sik;Choi, Byung-Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.597-606
    • /
    • 2014
  • The preference of general adult on the forest and forest road was surveyed and analyzed for the development of forest therapy program. This study was conducted for the purpose of providing a basis for the development of more targeted-and differentiated-forest therapy program by analyzing the preference of general adult on the forest and forest road from 19 April 2014 to 30 June 2014 through on-line survey. The sample group of 613 adults has been used in practical analysis. Using SPSS 21.0, We looked at the preference differences of the forest and forest road according to the demographic characteristics(sex, age, education level, occupation and monthly income) through descriptive statistics analysis, frequency analysis, cross tabulation analysis, multiple response analysis. The seasonal preference was spring, autumn, any season, summer, winter in order and there was a significant difference according to one's sex, age, occupation and monthly income. There was a significant difference in the configuration of forest according to one's monthly income. The favorite type of forest as a place of forest healing program was natural recreational forest, healing forest, urban forest, park, school forest in order. There was no significant difference in the favorite forest type regarding to the distance to the healing place from one's residence in all cases. There was a significant difference in the type of forest according to one's monthly income. The most favorite configuration of forest road was gentle sloped road. Once walking into the forest for the purpose of healing, the favorite forest road length was 1.5~3 km, less then 1.5 km, more than 3 km in order and there was a significant difference in preference according to one's sex, age, education level and monthly income. We believe that the healing program should be differentiated from the general form of it according to one's sex, age, education level, occupation and monthly income as a result of this investigation of preference of general adult on the forest and forest road for the development of forest therapy program. In particular, we believe that the differentiated program should be offered according to one's age. We expect this analysis to be used as a basis for the development of forest therapy program.

A Study of Frost Penetration Depth and Frost Heaving in Railway Concrete Track (콘크리트 궤도의 동결깊이 및 동상량 측정 연구)

  • Lee, Daeyoung;Kim, Youngchin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Many infra suructure such as road, railway, building and utility foundations have been damaged by the repeated freezing and thawing of the soil during winter and spring every year in seasonal frost region. The frost penetration depth is most important factor in the design of structure such as road, railway and building in seasonal frost region. This paper presents the results of calculation of frost penetration depth and frost heaving in concrete track for railway construction. Model concrete track were installed near the railway track in Gangwon, Gyeonggi, Choongbuk province and frost penetration depth were measured using methylene blue frost penetration depth gauge. Model concrete track in Cheolwon, frost heaving of concrete track were also evaluated. The measure of maximum frost penetration depth and frost heaving can be applied to design railway track for cold region in Korea.

Numerical Method for Prediction of Air-pumping Noise by Car Tyre (자동차 타이어의 Air-Pumping소음 예측을 위한 수치적 기법)

  • Kim, Sungtae;Jeong, Wontae;Cheong, Cheolung;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.788-798
    • /
    • 2005
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a Piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory This paper describes an approach to predict the air-pumping noise of a car tyre with CFD/Kirchhoff integral method. The tyre groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired.'rhese unsteady flow data are used as a air-pumping source in the next CFD calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of simply modeled car tyre and through the predicted results, the influence of nonlinear effect on air-pumping noise propagation is investigated.

Development of Vibration Absorption Device for the Transportation-Trailer System(II) - Connecting Hitch for Power Tiller-Trailer - (수송 트레일러의 충격흡수장치 개발(II) - 동력경운기 연결 히치 -)

  • Hong J. H.;Lee H. J.;Lee S. B.;Park W. Y.;Kim S. Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.147-154
    • /
    • 2005
  • The improved hitch device, which connecting the trailer to power tiller, was developed. This device, composed with spring and rubber, could reduce the vibration and shock levels during driven on off-road. The vertical vibration accelerations for the improved hitch device were measured at 6 positions, i.e. engine, hitch, seat, and three points in trailer (front, middle, and rear) for not driving but at low engine speed of 500 rpm, and compared with the existing hitch device. The results of this study could be summarized as follows; The average vibration acceleration up to 120 Hz was $0.4m/s^2$ at engine part, but it was 0.08 and $0.05m/s^2$ at trailer for existing and improved hitch device, respectively. About $38\%$ of average acceleration level could be absorbed for the improved hitch device compared with existing hitch device. The average vibration acceleration up to 40 Hz was reduced to 0.12 and $0.06m/s^2$ at trailer for existing and improved hitch device respectively, showing the reduction effect of $50\%$. The maximum acceleration occurred at up to 20 Hz of low frequency was much higher than total acceleration occurred at up to 120 Hz, which means that much loss or damage could be occurred during transporting of agricultural products on off-road. The portions of average acceleration occurred at up to 20 Hz of low frequency were $27\%\;and\;21\%$ for the existing and improved hitch device, respectively.

Analysis of Bicycle Cushion System by using Repulsive Force of Magnetics (영구자석의 척력을 이용한 자전거 완충장치 해석)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • One commercial package for magnetic analysis was used to apply repulsive forces of permanent magnetics to bicycle cushion system. Reliabilities of finite element analysis were acquired by comparing with those of experimental measurements. Equivalent spring stiffnesses corresponding to various sizes of magnetics were implemented into the bicycle dynamic model with three degree of freedom. Input force caused at front and rear wheels due to road unevenness was considered in the dynamic model. Dynamic behaviors were observed in terms of vertical displacements of the rider and the front reach as well as pitching displacement of the mass center when the bicycle ran over half-triangular bump. The methodology suggested in this paper by the finite element analysis and numerical model will be an useful tool for more accurate prediction of cushion design for any vehicle system if magnetic forces are utilized.

Dynamic Analysis of Highway Bridges by 3-D. Vehicle Model Considering Tire Enveloping (타이어 접지폭을 고려한 3차원 차량모델에 의한 도로교의 동적해석)

  • Chung, Tae Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.989-999
    • /
    • 2006
  • In this paper, numerical analysis method to perform linear dynamic analysis of bridge considering the road surface roughness and bridge-vehicle interaction when vehicle is moving on bridge is presented. The vehicle and bridge are modeled as three-dimension where contact length of tire and pitching of tandem spring are considered and single truck with 2-axles and 3- axles, and tractor-trailer with 5-axles are modeled as 7-D.O.F., 8-D.O.F., and 14-D.O.F., respectively. Dynamic equations of vehicle are derived from the Lagrange's equation and solution of the equation is obtained by Newmark-${\beta}$ method. The surface roughness of bridge deck for this analysis is generated from power spectral density (PSD) function. Beam element for the main girder, shell element for concrete deck and rigid link between main girder and concrete deck are used. The equations of the motion of bridges are solved by mode-superposition procedures. The proposed procedure is validated by comparing the results with the experimental data by Whittemore and Fenves.

Analysis of Vibration Suspension Device for Trailer in Agricultural Products (농산물 수송 트레일러의 현가장치 진동 분석)

  • Hong, Jong-Ho;Lee, Seong-Beom;Park, Won-Yeob;Kim, Seong-Yeob;Wu, Yong-Gun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.437-444
    • /
    • 2012
  • This study was aimed to minimized the impact force and vibration transmitted to transporting agricultural product from the power tiller trailer by installing vibration absorption device. The vibration absorbable trailer (I) mounted with leaf spring suspension and shock absorber was developed and compared on vibration absorption performance with the existing trailer (E) equipped no vibration absorption device. In order to identify the vibration absorption effect of the trailer developed in this study, the vibration accelerations, occurred during driving on paved road with loading 360 kg of pear, were measured and analyzed using FFT analyzer. The magnitude of average vibration acceleration was decreased highly for the improved trailer mounted with vibration absorption device in comparing with existing trailer in the frequency range under 60 Hz and under 80 Hz. And similar vibration absorption effect was represented for the improved trailer in all frequency range. Especially, in the frequency range between 40 Hz and 80 Hz, the magnitude of vibration acceleration for the improved trailer was decreased with 1/3 times in comparing with existing trailer. So, the transporting loss including damage of agricultural product could be decreased highly by using the improved vibration absorbable trailer mounted with leaf spring suspension and shock absorber simultaneously, designed in this study.

Design and Performance Evaluation of Electro-rheological Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 전기유변유체 쇽 업소버의 설계 및 성능평가)

  • Sung, Kum-Gil;Choi, Seung-Bok;Park, Min-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.444-452
    • /
    • 2010
  • This paper presents design and performance evaluation of electro-rheological(ER) shock absorber for electronic control suspension(ECS). In order to achieve this goal, a cylindrical ER shock absorber that satisfies design specifications for a mid-sized commercial passenger vehicle is designed and manufactured to construct ER suspension system for ECS. After experimentally evaluating dynamic characteristics of the manufactured ER shock absorber, the quarter-vehicle ER suspension system consisting of sprung mass, spring, tire and the ER shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle ER suspension system, the skyhook controller is implemented for the realization of quarter-vehicle ER suspension system. In order to present control performance of ER shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

Ride Comfort Analysis of Passenger Vehicle Featuring ER Damper with Different Tire Pressure (타이어 공기압에 따른 ER 댐퍼 장착 승용차의 승차감분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.210-216
    • /
    • 2016
  • In this work, performance analysis to improve ride comfort of an ER (electrorheological) fluid damper for a mid-sized passenger vehicle in terms of tire pressure is presented. An ER damper by considering specification for a mid-sized commercial passenger vehicle is proposed and mechanically designed. After manufacturing and assembling the proposed ER damper with design parameters, their performance such as field-dependent damping forces are experimentally measured. A quarter-vehicle ER ECS (Electronic Control Suspension) system consisting of the ER damper, sprung mass, spring, sky-hook controller and tire is constructed to analysis the ride comfort performances. Vertical tire stiffness with different tire pressure is experimentally measured and investigated. In addition, ride comfort analysis such as vertical acceleration root mean square (RMS) of sprung mass is investigated under bump road using quarter-vehicle test equipment.

Implementation and Verification of Linear Cohesive Viscoelastic Contact Model for Discrete Element Method (선형 부착성 점탄성 접촉모형의 DEM 적용 및 해석적 방법을 이용한 검증)

  • Yun, Tae Young;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.25-31
    • /
    • 2015
  • PURPOSES: Implementation and verification of the simple linear cohesive viscoelastic contact model that can be used to simulate dynamic behavior of sticky aggregates. METHODS: The differential equations were derived and the initial conditions were determined to simulate a free falling ball with a sticky surface from a ground. To describe this behavior, a combination of linear contact model and a cohesive contact model was used. The general solution for the differential equation was used to verify the implemented linear cohesive viscoelastic API model in the DEM. Sensitivity analysis was also performed using the derived analytical solutions for several combinations of damping coefficients and cohesive coefficients. RESULTS : The numerical solution obtained using the DEM showed good agreement with the analytical solution for two extreme conditions. It was observed that the linear cohesive model can be successfully implemented with a linear spring in the DEM API for dynamic analysis of the aggregates. CONCLUSIONS: It can be concluded that the derived closed form solutions are applicable for the analysis of the rebounding behavior of sticky particles, and for verification of the implemented API model in the DEM. The assumption of underdamped condition for the viscous behavior of the particles seems to be reasonable. Several factors have to be additionally identified in order to develop an enhanced contact model for an asphalt mixture.