• Title/Summary/Keyword: Spring Parameter

Search Result 300, Processing Time 0.025 seconds

Modeling Negative Stiffness Mechanism of Vestibular Hair Cell by Applying Gating Spring Hypothesis to Inverted Pendulum Array (게이팅 스프링 가설을 적용한 전정기관 유모세포의 반강성 메커니즘 모델)

  • Lim, Ko-Eun;Park, Su-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.405-408
    • /
    • 2007
  • Vestibular hair cells, the sensory receptors of vestibular organs, selectively amplify miniscule stimuli to attain high sensitivity. Such selective amplification results in compressive nonlinear sensitivity, which plays an important role in expanding dynamic range while ensuring robustness of the system. In this study, negative stiffness mechanism, a mechanism responsible for the selective amplification by vestibular hair cells, is applied to a simple mechanical system consisting of an array of inverted pendulums. The structure and working principle of the system have been inspired by gating spring hypothesis proposing that opening and closing of transduction channels contributes to the global stiffness of vestibular hair bundle. Parameter study was carried out to analyze the effect of each parameter on the compressive nonlinearity of suggested model.

  • PDF

Design of a Spring-Actuated Linkage for Specified Dynamic Responses (규정된 동적응답을 위한 스프링구동 링크기구의 설계)

  • Ahn, K.Y.;Cho, S.S.;Park, W.J.;Kim, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.476-481
    • /
    • 2001
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. Because the opening dynamics of electric contacts is determined by such a linkage system, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the energy conservation that the total system energy is constant throughout the operating range of a mechanism, a systematic design procedure of determining the spring design parameters is presented. The proposed procedure is applied to the design of an opening spring for satisfying the specified opening characteristics.

  • PDF

Characteristics and Useful Life Prediction of Rubber Spring for Railway Vehicle (전동차용 방진고무스프링 특성 및 사용수명 예측)

  • Woo, Chang-Su;Park, Hyun-Sung;Park, Dong-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.211-216
    • /
    • 2007
  • Rubber components are widely used in many application such as vibration isolators, damping, ride quality. Rubber spring is used in primary suspension system for railway vehicle. Characteristics and useful life prediction of rubber spring was very important in design procedure to assure the safety and reliability. Non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by physical tests which are uniaxial tension, equi-biaxial tension and pure shear test. The computer simulation was executed to predict and evaluate the load capacity and stiffness for rubber spring. In order to investigate the useful life, the acceleration test were carried out. Acceleration test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful life prediction for rubber spring were proposed.

Evaluation of Characteristics and Useful Life of Rubber Spring for Railway Vehicle

  • Woo, Chang-Su;Park, Hyun-Sung;Park, Dong-Chul
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.122-127
    • /
    • 2008
  • Rubber components are widely used in many application such as vibration isolators, damping, ride quality. Rubber spring is used in primary suspension system for railway vehicle. Characteristics and useful life prediction of rubber spring was very important in design procedure to assure the safety and reliability. Non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by physical tests which are uniaxial tension, equi-biaxial tension and pure shear test. The computer simulation was executed to predict and evaluate the load capacity and stiffness for rubber spring. In order to investigate the useful life, the acceleration test were carried out. Acceleration test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful life prediction for rubber spring were proposed.

  • PDF

Design and Characteristic Analysis of Moving Magnet Type Linear Oscillatory Actuator with Spring Damper (스프링 댐퍼를 이용한 가동 자석형 리니어 진동 엑추에이터의 설계 및 특성해석)

  • 조성호;김덕현;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • This Paper deals with the design of Moving Magnet type Linear Oscillatory Actuator(MM-LOA) using spring damper based on the design procedure and the characteristic analysis. MM-LOA is applied to variable load such as vaccum pump and compressor, The structure of piston type is selected to reduce a noise. MM-LOA has over-displacement in starting state because of the low inertia of mover To improve the starting characteristic, spring damper is used. The optimum spring constant of spring damper is detected and in consideration of spring damper, MM-LOA redesigned. The parameter is calculated by Finite Element Method(FEM). For the dynamic characteristic analysis, time differential method composed of voltage and kinetic equation is used. The propriety of the improved model is verified through the experimental results.

A novel nonlinear gas-spring TMD for the seismic vibration control of a MDOF structure

  • Rong, Kunjie;Lu, Zheng
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.31-43
    • /
    • 2022
  • A nonlinear gas-spring tuned mass damper is proposed to mitigate the seismic responses of the multi-degree-of-freedom (MDOF) structure, in which the nine-story benchmark model is selected as the controlled object. The nonlinear mechanical properties of the gas-spring are investigated through theoretical analysis and experiments, and the damper's control parameters are designed. The control performance and damping mechanism of the proposed damper attached to the MDOF structure are systematically studied, and its reliability is also explored by parameter sensitivity analysis. The results illustrate that the nonlinear gas-spring TMD can transfer the primary structure's vibration energy from the lower to the higher modes, and consume energy through its own relative movement. The proposed damper has excellent "Reconciling Control Performance", which not only has a comparable control effect as the linear TMD, but also has certain advantages in working stroke. Furthermore, the control parameters of the gas-spring TMD can be determined according to the external excitation amplitude and the gas-spring's initial volume.

Stability of Stepped Columns Subjected to Nonconservative Force (비보존력이 작용하는 불연속 변단면 기둥의 안정성)

  • Oh, Sang-Jin;Mo, Jeong-Man;Lee, Jae-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.801-804
    • /
    • 2006
  • The purpose of this paper is to investigate the stability of stepped cantilever columns with a tip mass of rotatory inertia and a translational spring at one end. The column model is based on the Bernoulli-Euler theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibration of columns with stepwise variable cross-section and subjected to a subtangential follower force is solved numerically using the corresponding boundary conditions. And the bisection method is used to calculate the critical divergence/flutter load. The frequency and critical divergence/flutter load for the stepped column with a single step are presented as functions of various non-dimensional system parameters: the segmental length parameter, the section ratio, the subtangential parameter, the mass, the moment of inertia of the mass, and the spring parameter.

  • PDF

Lumped Parameter Model of Transmitting Boundary for the Time Domain Analysis of Dam-Reservoir System (댐의 시간영역 지진응답 해석을 위한 호소의 집중변수모델)

  • 김재관;이진호;조정래
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.27-38
    • /
    • 2001
  • A mechanical lumped parameter model is proposed for the dynamic modeling of a semi-infinite reservoir. A semi-analytic transmitting boundary is derived for a semi-infinite 2-D reservoir of constant depth. The characteristics of the solution are examined in both frequency and time domains. Mass, damping and spring coefficients of the mechanical model are obtained to preserve the major features of the solution such as eigenfrequencies and the shapes of Bessel functions that appear as kernels in the convolution integrals. The lumped parameter model in its final form consists of two masses, a spring and two dampers for each eigenfrequency. Application examples demonstrated that the new lumped parameter model could be used for the time domain analysis of dam-reservoir systems.

  • PDF

Finite Element Analysis of Metal Bonded Rubber Spring (금속-고무 스프링의 유한요소 해석)

  • 우창수;김완두
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.474-481
    • /
    • 1998
  • Metal bonded rubber spring is used in primary suspension component of the high speed train. The aim of this study is to establish a finite element analysis technique for the metal bonded rubber spring. Some theoretical analyses were performed on the hyperelastic behavior in rubber material and test are carried out to acquire the constants in strain energy function for it. Also, finite element analysis were executed to evaluate the design parameter and behavior of deformation and stress distribution using by the commercial finite element code.

  • PDF

Opening Spring Modeling of Current Circuit Breaker Mechanism with respect to Opening Speed using Energy Method (전류 차단기 메커니즘에서 에너지방법을 이용한 차단 속도에 따른 스프링 모델링)

  • Kwon, Byung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.688-692
    • /
    • 2000
  • This study proposed design parameters of opening spring of circuit breaker that cut off the over-current in order to protect the electric device about opening speed using the energy method. We simulated the opening kinetic energy, the potential energy of opening spring and the design parameters of opening spring with respect to opening speed of VCB (Vacuum Circuit Breaker)'s moving contactor which has 24kV 25kA break capacity. From the result of simulation the initial tensional force and the final tensional force of the opening spring chose 107kgf and 282kgf respectively. Through the dynamic analysis using ADAMS, We verified that the opening speed of moving contactor satisfied break capacity of VCB and analyzed opening dynamic characteristics of VCB such as the opening displacement, the opening velocity and the opening acceleration of moving contactor in time domain.

  • PDF