• 제목/요약/키워드: Spring Motion

검색결과 494건 처리시간 0.029초

메카트로닉스 산업용 일반 작업복 개발 - 춘하 및 동절기 작업복 평가를 중심으로 - (The Development of Work Clothes for the Mechatronics Industry through Evaluating Spring-Summer and Winter Suits' Clothing Performance)

  • 박진아
    • 복식
    • /
    • 제61권9호
    • /
    • pp.97-113
    • /
    • 2011
  • To develop the work clothes for the employees in the mechatronics industry in South Korea, a questionnaire survey on many aspects of the work clothes such as type, color, detailed design and function preference of the subject employees has been carried out in the study. The results throughout the survey highlighted certain functions such as extensibility, thermal and air permeability of importance for the work clothing performance. To improve the discomfort caused by some work motions (i.e. squatting down, ascending/descending the stairs, raising arms), more allowances were given to the measurements (i.e. body rise + 2cm and crotch depth + 1cm for squatting down pose; thigh circumference + 1cm and knee circumference + 1cm for ascending/ descending the stairs pose; chest circumference + 5~6cm and jumper length to the level of hip circumference line for raising arms pose) for work clothes patternmaking. The evaluation of the two types of spring/summer and winter work clothes' clothing comfort and wearer mobility suggested certain points to improve the clothing performance (e.g. ventilation slits on the back pleats, arm pits and collar band of the spring/summer suit using net material and lining for the winter suit using quilted thermal materials) and wearer mobility (e.g. pants hem buckles for the easy work motion), which also enabled to fulfill the workers' work clothes design preference.

밀리엑츄에이터가 내재된 신규 서스펜션 (New Milliactuator Embedded Suspension)

  • 윤준현;홍어진;양현석;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.477-482
    • /
    • 2001
  • To realize higher track density of HDD, the servo bandwidth should be higher, however, is limited by the mechanical resonances of the arm, coil of the VCM and ball bearing pivot. The dual-stage actuator systems have been suggested as a possible solution. For the dual-stage actuator systems based on the suspension, the suspension resonance frequencies in the radial access direction are important factors to increase a servo bandwidth, however the improvement of these frequencies may affect the shock resistance performance and spring constant. The slider's flying stability can be deteriorated by the change of a vertical stiffness. In this work, we have investigated a suspension design scheme possessing a milliactuator for dual-stage actuator systems and also achieved higher mechanical characteristics. Design parameters are deduced by finite element analysis with sensitivity function. It is confirmed that the proposed suspension with the milliactuator has the capability of fine tracking motion, due to its hinge structure on the spring region, and achieves higher mechanical resonance frequencies in the radial access direction with a high-shock resistance and a low-spring constant.

  • PDF

노인군 보행 속도 증가에 따른 하지 강성 증가 (Vertical Limb Stiffness Increased with Gait Speed in the Elderly)

  • 홍현화;박수경
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.687-693
    • /
    • 2011
  • Spring-mass models have been widely accepted to explain the basic dynamics of human gait. Researchers found that the leg stiffness increased with gait speed to increase energy efficiency. However, the difference of leg stiffness change with gait speed between the young and the elderly has not been verified yet. In this study, we calculated the lower limb stiffness of the elderly using walking model with an axial spring. Vertical stiffness was defined as the ratio of the vertical force change to the vertical displacement change. Seven young and eight elderly subjects participated to the test. The subjects walked on a 12 meter long, 1 meter wide walkway at four different gait speeds, ranging from their self-selected speed to maximum speed randomly. Kinetic and kinematic data were collected using three force plates and motion capture cameras, respectively. The vertical stiffness of the two groups increased as a function of walking speed. Maximum walking speed of the elderly was slower than that of the young, yet the walking speed correlated well with the optimal stiffness that maximizes propulsion energy in both groups. The results may imply that human may use apparent limb stiffness to optimize energy based on spring-like leg mechanics.

마찰 스프링을 이용한 주퇴복좌기 설계 연구 (Study on Designing Recoil System with Friction Springs)

  • 김영선;김성수;차기업;노명규
    • 대한기계학회논문집A
    • /
    • 제35권4호
    • /
    • pp.367-374
    • /
    • 2011
  • 마찰 스프링은 부하가 가해질 때와 가해지지 않을 때 서로 다른 특성을 가지고 있다. 마찰스프링의 이러한 특성으로 인해 충격 시스템에 주로 사용된다. 본 논문에서는 마찰 스프링을 포함한 발사장치의 주퇴복좌기 설계 연구가 수행되었다. 마찰 스프링의 강성을 결정하기 위해서는 충격량과 운동량 관계를 고려한 단순한 발사장치 모델의 운동방정식이 개발되었다. 발사장치의 동적 거동시뮬레이션 결과에 기초하여, 주퇴복좌 시스템의 마찰 스프링의 지름을 결정하였다.

산업용 안전 릴리프밸브 유동특성에 관한 수치연구 (A Numerical Study on the Flow Characteristics through an Industrial Safety Relief Valve)

  • 강상모;이봉희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.696-704
    • /
    • 2009
  • In this paper, the flow characteristics through an industrial safety relief valve used to protect the crankcase room in a large-sized marine engine have been numerically investigated using the moving-mesh strategy. With the room pressure higher than the cracking one, the spring-loaded disc becomes open and then the air in the room blows off into the atmosphere, resulting in the reduction of the room pressure and then the shutoff of the disc. Numerical simulations are performed on the compressible air flow through the relief valve (${\phi}160mm$) with the initial room pressure (0.11 bar or 0.12bar) higher than the cracking one (0.1 bar). The numerical method has been validated by comparing the results with the empirical ones. Results show that the disc motion and flow characteristics can be successfully simulated using the moving-mesh strategy and depend strongly on the spring stiffness and the flow passage shape. With increasing spring stiffness, the maximum disc displacement decreases and thus the total disc-opening time also decreases. In addition, the flow passage shape makes a significant effect on the velocity and direction of the flow.

자율주행 내시경을 위한 공압 구동장치의 이동특성에 관한 실험적 연구 (Experimental Study on the Movement of Pneumatic Actuating Mechanism for Self-Propelling Endoscope)

  • 임영모;박지상;김병규;박종오;김수현
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.194-199
    • /
    • 2001
  • In this paper, we propose a new locomotive mechanism using impulsive force for microcapsule-type endoscope. It has the compact size for movement in the colon and actuating mechanisms for hi-directional movement. The actuating mechanism resembles a pneumatic cylinder and consists of body, inertia mass(piston). spring. pneumatic source and calve. When valve is ON, the pneumatic impulsive force between piston and body drives them in two opposite direction. As the air in the body is passed away, the contrary movements are occurred by spring reaction. Therefore, the direction of body's motion is determined by the relative magnitude of two opposite impulsive forces, i.e., pneumatic and spring force. The effect of two impulsive forces can simply be controlled by On-Off time of solenoid valve.

  • PDF

초소형 광디스크 드라이브용 관성 래치 설계 (Inertia Latch Design for Micro Optical Disk Drives)

  • 김경호;김유성;이승엽;유승헌;김수경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1157-1164
    • /
    • 2003
  • Dynamic Load/unload (L/UL) mechanism is an alternative to the contact start stop (CSS) technology which eliminates stiction and wear failure modes associated with CSS. Other benefits of L/UL include increased areal density due to smooth disk surfaces, thinner overcoats, and lower head flying height Improved shock resistance due to elimination of head slap, and reduced power consumption. Inertia latch mechanism becomes important for mobile disk drives because of non operating shock performance. Various types of latch designs have been introduced in hard disk drives to limit a rotary actuator from sudden uncontrolled motion. In this paper, a single spring inertia latch is introduced for a small form optical disk drive, which uses a rotary actuator for moving an optical pick-up. A new small inertia latch with single spring is designed to ensure both feasible and small size. The shock performance of the new inertia latch is experimentally verified.

  • PDF

에너지 절감형 자동차용 현가장치에 관한 연구 (A Study on the Automotive Suspension System for Energy Efficiency)

  • 소상균
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.100-107
    • /
    • 2001
  • The main goals of the automotive suspension systems are to isolate roadway unevenness from the tire and to improve vehicle stability. To overcome the performance limitation of the passive systems the active systems which completely replace the passive spring and damper elements with a force generating actuator has been studied. However, application of the system has been limited because it has required a significant amount of power. Recently, alternative systems which retain passive elements but include active elements have been developed to reduce the power required. Those systems are mostly focused on the control system which compresses the spring-damper directly. In this study, a new type of power efficient control system which makes the spring-damper unit slide in side way is studied. After constructing the control system including dynamic modeling and motion control, two types of alternative control systems are compared in view of power consumption and dynamic attitudes such as roll responses as well as heave responses. Also, a half car bond graph model is developed to show clearly the significant differences in performances between two control systems.

  • PDF

Artificial Muscle Actuator Based on the Synthetic Elastomer

  • Chuc, Nguyen Huu;Koo, Ja-Choon;Lee, Young-Kwan;Nam, Jae-Do;Choi, Hyouk-Ryeol
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.894-903
    • /
    • 2008
  • In this paper, we present an artificial muscle actuator producing rectilinear motion, called the Tube-Spring-Actuator(TSA). The TSA is supposed to be a prospective substitute in areas requiring macro forces such as robotics. It is simply configured from a synthetic elastomer tube with an inserted spring. The design of the TSA is described in detail and its analysis is conducted to investigate the characteristics of the actuator based on the derived model. In addition, the performance of the proposed actuator is tested via experiments.

변형되는 비정렬 격자계를 이용한 삼차원 비정상 점성 유동 계산 기법 개발 (Development of a 3-D Unsteady Viscous Flow Solver on Deforming Unstructured Meshes)

  • 김주성;권오준
    • 한국전산유체공학회지
    • /
    • 제9권2호
    • /
    • pp.52-61
    • /
    • 2004
  • In the present study, a solution algorithm for the computation of unsteady flows on unstructured meshes is presented. Dual time stepping is incorporated to achieve the second-order temporal accuracy while reducing errors associated with linearization and factorization. This allows any time step size, which is suitable for considering physical phenomena of interest. The Gauss-Seidel scheme is used to solve the linear system of equations. A special treatment based on spring analogy is made to handle meshes with high aspect-ratio cells. The present method was validated by comparing the results with experimental data and those obtained from rigid motion.