• 제목/요약/키워드: Spring Actuator

검색결과 200건 처리시간 0.042초

소형로봇을 위한 원추형 스프링 기반의 도약 메커니즘의 개발 (Development of Conical Spring-based Jumping Mechanism for a Portable Robot)

  • 김병상;이장운;김현중;;송재복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1195-1200
    • /
    • 2007
  • It is desirable that the guard robot should be small-sized and light-weighted to increase its portability. In addition, it should be able to overcome a relatively high obstacle to cope with different situations. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes the jumping mechanism based on the conical spring for a small robot. Both the clutch mechanism and conical spring are incorporated into the jumping mechanism. In the clutch mechanism, the spring can be immediately compressed and released by one actuator with the planetary gear train and one-way clutch. The robot equipped with the jumping mechanism can overcome the obstacles which are higher than its height. In this paper, the characteristic of the conical spring for the jumping robot is determined and the small-sized, lightweight jumping mechanism is developed. The validity of the jumping mechanism was verified by various experiments. It is shown that the robot using this mechanism can provide good mobility in the rough terrain.

  • PDF

부분적으로 자기장에 노출된 굴곡형 스프링을 이용한 대변위 전자기력 구동기 (Large-Displacement Electromagnetic Actuators with the Meander Springs Partially Exposed to Magnetic Field)

  • 서대건;한원;조영호
    • 대한기계학회논문집A
    • /
    • 제36권5호
    • /
    • pp.481-486
    • /
    • 2012
  • 본 논문에서는 대변위 구동이 가능한 구동기의 설계를 위해 기존의 전자기력 구동기에 비해 낮은 스프링 상수를 갖는 굴곡형 스프링을 적용하고, 변위가 발생하는 방향으로만 로렌츠힘이 생기도록 굴곡형 스프링의 일부분만 자기장에 노출시키는 구동기를 제안한다. 굴곡형 스프링의 양쪽 부재가 자기장에 노출된 구조(prototype F)와 굴곡형 스프링의 한쪽 부재만을 자기장에 노출시킨 구조(prototype P)를 설계하고, 제작하여 실험한 결과 prototype P 가 굴곡형 스프링의 양쪽 부재를 자기장에 노출시킨 prototype F의 구동성능에 비해 $16.9{\pm}1.2%$의 진폭 증가를 보임을 실험적으로 검증하였다. 제안된 구동기는 제한된 면적 내에서 작은 전류(<50mA)와 작은 자기장(<0.3T)으로 대변위 구동을 가능케 하여 광 스위치 또는 광 단속기 등에 응용이 가능하다.

제조공정 오차보상용 보정 탄성체를 이용한고정도 디지털-아날로그 구동기 (High-Accuracy Digital-to-Analog Actuators Using Load Springs Compensating Fabrication Errors)

  • 한원;이원철;조영호
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.823-830
    • /
    • 2008
  • We present a high-accuracy digital-to-analog (DA) actuator using a load spring, specially designed to compensate the output displacement errors caused by fabrication errors. The compensated linear DA actuator is capable to change the slope of input-output modulation line in order to compensate fabrication errors. We design, fabricate, and characterize three different prototypes: one uncompensated design and two compensated designs respectively for a specific value and for a given range of fabrication error. The compensated linear DA actuators show the output displacement errors of $-0.20{\pm}0.23{\mu}m\;and\;-0.13{\pm}0.18{\mu}m$, respectively, reduced by 64.3% and 76.8% of the output displacement error, $0.56{\pm}0.20{\mu}m$, produced by the conventional uncompensated linear DA actuator. We experimentally verify the fabrication error compensation capability of the present compensated linear DA actuators, thus demonstrating high-accuracy actuation performance immune to fabrication errors.

직렬 탄성 액츄에이터 기반의 로봇 손가락의 힘 제어 (Force Control of Robot Fingers using Series Elastic Actuators)

  • 이승엽;김병상;송재복;채수원
    • 제어로봇시스템학회논문지
    • /
    • 제18권10호
    • /
    • pp.964-969
    • /
    • 2012
  • Robot hands capable of grasping or handling various objects are important for service robots to effectively aid humans. In particular, controlling a contact force and providing a compliant motion are essential when the hand is in contact with objects. Many dexterous robot hands equipped with force/torque sensors have been developed to perform force control, but they suffer from the complexity of control and high cost. In this paper, a low-cost robot hand based on SEA (Series Elastic Actuator), which is composed of compression spring, stretch sensor, and wire, is proposed. The grasping force can be estimated by measuring the compression length of spring, which would allow the hand to perform force control. A series of experimentations are carried out to verify the performance of force control of the proposed robot hand, and it is shown that it can successfully control the contact force without any additional force/torque sensors.

작업자들을 위한 대퇴 근력 보조 로봇의 개발 (Development of Thigh Muscular Strength Assistance Robot for Workers)

  • 김정엽
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.622-628
    • /
    • 2013
  • This paper describes the development of a thigh-muscle strength-assistance robot, which is a kind of wearable robot. For practicality and commercialization, we proposed three fundamental concepts: the reduction of the thigh-muscle strength, minimized degree of dependence on a powered actuator, and complete wearer safety. Based on these concepts, a spring and link bar mechanism was conceived as a novel idea. The movement of the thigh is transferred to the spring mechanism through the link bar; hence, the elastic force of the spring assists the thigh muscle. Using forse sensing resistor (FSR) sensors and a powered cam mechanism, the muscle assistance is automatically activated and deactivated according to the wearer's movement. The specific mechanisms of the robot are addressed in detail, and the effectiveness is verified by experiments.

토크센서 기반 사용자의도 파악이 가능한 보행보조기용 인휠 구동기 개발 (Development of In-wheel Actuator for Active Walking Aids Equipped with Torque Sensor for User Intention Recognition)

  • 임승환;김태근;김동엽;황정훈;김봉석;박창우;이재민;홍대희
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1141-1146
    • /
    • 2014
  • As life expectancy becomes longer, reduction of human muscular strength threatens quality of human life. Many robotic devices have thus been developed to support and help human daily life. This paper deals with a new type of in-wheel actuator that can be effectively used for the robotic devices. BLDC motor, drive board, brake, ARS (Attribute Reference System), and torque sensor are combined in the single actuator module. The torque sensor is used to recognize human intention and the in-wheel actuator drives walking aids in our system. Its feasibility was tested with the active walking aid device equipped with the in-wheel actuator. Based on it, we designed an admittance filter algorithm to react on uphill and downhill drive. By adjusting mass, damping, and spring parameters in accordance with the ARS output, it provided convenient drive to the old on uphill and downhill walks.