• Title/Summary/Keyword: Sprayed

Search Result 1,366, Processing Time 0.029 seconds

The Effect of Atmospheric Plasma Parameters on Cleansing the Electronic-Industrial Parts (상압 플라즈마 매개변수들이 산업용 전자부품의 세척공정(cleansing)에 미치는 효과)

  • Ri, Eui-Jae
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.208-215
    • /
    • 2009
  • We employed atmospheric plasma to reactively remove the lubricant sprayed onto such industrial electronic parts as LCD chassis during sheet-metal forming processes and investigated basically the effect of plasma parameters on cleansing the surfaces of zinc-electroplated steel plates (EGI). Specimen prepared with some controlled amount of lubricant sprayed on their surfaces beforehand were subjected to two different kinds of atmospheric plasma, one being generated by using air and the other generated by using nitrogen (99.9% purity). Locating the plasma beams at the height range between 3.5 and 13.5 mm from the surface of each specimen and radiating for 5 to 30 seconds resulted out that the cases with a position of 3.5 mm and a duration of 5 seconds or longer showed the surfaces completely cleansed without a trace of lubricant. Furthermore we found out that the plasma generated by using simple air depicted higher cleansing ability than the other one generated by using expensive nitrogen, interestingly useful very much for industrial purposes. On another aspect, we confirmed that the drilled or cut surfaces of Zn-plated steel substrate would not be oxidized even under the influence of plasma during its cleansing process. Therefore, we could probably conclude from this fore-survey that a dry process adopting atmospheric plasma for cleansing industrial parts might be determined to become successful in terms of commercialization, cautiously.

Thermal Performance Characteristics of Closed-Wet Cooling Tower (밀폐형 냉각탑의 열성능 특성에 관한 실험적 연구)

  • Sarker, M.M.A.;Kim, E.P.;Moon, C.G.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.88-92
    • /
    • 2005
  • The experiment of thermal performance about closed-wet cooling tower was conducted in this study. A closed cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The test section for this experiment has the process that the cooling water flows from the top of the heat exchanger to the bottom side in the inner part of the tube, and spray water flows in the gravitational direction in the outer side. Air comes in direct contact with the spray water at the outer side of the tube while passing from the lower the upper part having a counterflow to the spray water. The heat transfer pipe used in this experiment is a bare-type tube having an outer diameter of 15.88mm. The heat exchanger is consisted of seven rows and fifteen columns. In this experiment, thermal performance of the cooling tower is derived from overall heat transfer coefficients between the process fluid and sprayed water and volumetric overall mass transfer coefficient between sprayed water and air.

  • PDF

A Study on the Improvement of Properties of Sprayed $Al_2O_3$ Ceramic Coating Layer. ($Al_2O_3$세라믹 용사피막의 특성개선에 관한 연구)

  • 김정일;이주원;최영국;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.49-58
    • /
    • 2000
  • Thermal spraying is one of the most common surface coating techniques to be used for many applications and flame spraying covers a wide range of different materials which can be coated onto various substrates. The purpose of this study is to investigate the effects of mixed ratio in composite coatings on the mechanical and anti-corrosion properties. The five different types of composite coatings were made with $Al_2O_3$ ceramic and Ni-alloy powder on the mild steel substrate by flame spraying method. The mechanical properties such as microhardness, adhesive strength and erosion resistance and corrosion resistance were tested for the sprayed coating specimens. The results obtained are summarized as follows; 1. The composite coating layers greatly improve the microstructure, erosion resistance and adhesive strength by increasing the content of Ni-Al alloy. 2. Microhardness of the compsite coating layer is decreased by increasing the content of Ni-Al alloy. 3. The anti-corrosion properties is considerably improved by increasing the compsite rate of Ni-Al alloy.

  • PDF

Service Life Prediction for Steel Bridge Coatings with Type of Coating Systems (도장계 종류에 따른 강교 도장의 공용수명 예측)

  • Lee, Chan Young;Chang, Taesun
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.325-335
    • /
    • 2016
  • To predict service life of coating systems registered in Korean specifications for steel bridge coatings, field deterioration evaluation and accelerated weatherproof test were carried out, and deterioration models were drawn through regression analysis for evaluation results. For the coating systems that have not been used in field, regression analyses were carried out for the virtual evaluation results drawn by applying coordination factor to the field evaluation results for chlorinated rubber and urethane topcoat system. Service life prediction results showed that application of thermal sprayed coating (TSC) could extend service life of coatings to more than twice of general coatings.

Yield Loss in Mulberry Due to Sucking Pest Whitefly, Dialeuropora decempuncta Quaintance and Baker (Homoptera: Aleyrodidae)

  • Bandyopadhyay, U.K.;Kumar, M.V.Santha;Das, K.K.;Saratchandra, B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.1
    • /
    • pp.75-78
    • /
    • 2001
  • The whitefly, Dialeuropora decempuncta Quaintance and Baker (Homoptera : Aleyrodidae) causing considerable damage to mulberry, Morus alba. Crop loss caused by the whitefly was estimated in mulberry. Quantitative yield loss was estimated on the basis of harvest data from both sprayed and unsprayed plots. Data on pest incidence has been recorded at weekly intervals in both sprayed and unsprayed plots from 30 th day of plant age till harvesting i.e., 60 days after pruning in August October season. An attempt has been made to establish a relationship between whitefly population and percentage of crop loss due to it. Percentage of crop loss due to whitefly has got a linear relationship with the whitefly population. An initial population of 24 adults/top leaf would be able to cause 24% loss (l,630 Kg leaf/ha ) in a period of 30 days. Economic analysis postulates that application of pesticide can stove a net amount of 1,630 Kg leaf/ha which is sufficient to produce 67.65 Kg of additional multivoltine cocoons. This determines the cost/benefit ratio which will enable to workout the economics of management practices.

  • PDF

Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating (플라즈마 제트에서의 분말 용융특성에 따른 Y2O3 코팅층의 미세조직 형성거동)

  • Kang, Sang-Woon;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.229-234
    • /
    • 2016
  • In this study, the degree of particle melting in $Y_2O_3$ plasma spraying and its effects on coating characteristics have been investigated in terms of microstructural features, microhardness and scratch resistance. Plasma sprayed $Y_2O_3$ coatings were formed using two different powder feeding systems: a system in which the powder is fed inside the plasma gun and a system in which the powder is fed externally. The internal powder spraying method generated a well-defined lamellae structure that was characterized by a thin porous layer at the splat boundary and microcracks within individual splats. Such micro-defects were generated by the large thermal contraction of splats from fully-molten droplets. The external powder spraying method formed a relatively dense coating with a particulate deposition mode, and the deposition of a higher fraction of partially-melted droplets led to a much reduced number of inter-splat pores and intra-splat microcracks. The microhardness and scratch resistance of the $Y_2O_3$ coatings were improved by external powder spraying; this result was mainly attributed to the reduced number of micro-defects.

Evaluation of Bond Strength of Isothermally Aged Plasma Sprayed Thermal Barrier Coating (플라즈마 용사 열차폐 코팅의 열화에 따른 접착강도 평가)

  • Kim, Dae-Jin;Lee, Dong-Hoon;Koo, Jae-Mean;Song, Sung-Jin;Seok, Chang-Sung;Kim, Mun-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.569-575
    • /
    • 2008
  • In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.