• Title/Summary/Keyword: Spray distance

Search Result 282, Processing Time 0.026 seconds

Effect of Injection Pressure on the Flash Boiling Spray from Simple Orifice Nozzle (인젝터 압력이 단공노즐 감압비등 분무에 미치는 영향)

  • Lee, Hyunchang;Cha, Hyunwoo;Kang, Donghyeon
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.42-49
    • /
    • 2022
  • Flash boiling occurs in a couple of modern engineering systems and understanding its mechanism is important. In this experimental study, discharge coefficient of flash boiling spray from simple orifice nozzle was measured, and backlight imaging was acquired at injection pressure to 6.0 bar and temperature to 163℃ for the purpose. Pressurized water by pump was used for working fluid and was heated by electric heater and ejected through simple orifice nozzle diameter of 0.5 mm. High speed camera with long distance microscope was used for backlight imaging in two FoV having magnification of 3.3 and 0.64. The decrease of discharge coefficient according to degree of superheating and evolution of flash boiling spray imaged at various pressure and temperature were explained by the pressure field inside the injector.

Numerical Study on Wall Impingement Process of GDI Spray According to Wall Cavity Angle (벽면 캐비티 각에 따른 GDI 분무의 벽 충돌 과정에 대한 수치적 연구)

  • Shim, Young-Sam;Kim, Duck-Jool;Choi, Gyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.971-978
    • /
    • 2007
  • A spray-wall impingement process of a hollow-cone fuel spray from the high-pressure swirl injector in the Gasoline Direct Injection (GDI) engine were experimented and calculated at various wall geometries. The Linearized Instability Sheet Atomization (LISA) & the Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model and the Gosman model were applied to model the breakup and the wall impingement process of the hollow-cone fuel spray. The numerical modelings were implemented in the modified KIVA code. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental results by the Laser Induced Exciplex Fluorescence (LIEF) technique. The droplet size distribution and the ambient gas velocity field, which are generally difficult to obtain by the experimental methods, were also calculated and discussed. It was found that the radial distance after wall impingement and Sauter Mean Diameter (SMD) decreased with increasing a cavity angle.

A Study on the Creation of Porosity in Al Alloy(AA2014) Large Rod Preforms by Spray Forming (분무성형법에 의한 Al 합금(AA2014) 대형봉상성형체 제조시 기공발생에 관한 연구)

  • Shin, Don-Soo;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.494-501
    • /
    • 1997
  • In order to manufacture large rod preforms of 2014 Al alloy with a good mechanical property by spray forming method, it was spray-formed at a droplet temperature of $715^{\circ}C$, a droplet flight distance of 400mm, and a spraying angle of $35^{\circ}$. The rod preforms were extruded at $397^{\circ}C$ with the die temperature of $420^{\circ}C$ under the hot extrusion ratio 21:1 and T6 heat treatment was performed. The 2014 Al alloys cast by hot top process were also extruded and heat-treated at the same condition as a reference material. Microstructural observation and tensile test were carried out to investigate the effects of extrusion on microstructure and mechanical property of spray-formed Al alloy. Spray-formed Al alloys had many porosities due to inappropriate process conditions such as long droplet flight distance and low droplet temperature but have fine equiaxed grain. These porosities were reduced with decreasing in grain size by hot extrusion. Ultimate tensile strength and yield strength of spray formed-extruded 2014 Al alloy were inferior to those of the normal cast-extruded 2014 Al alloy, but elongations were superior. The control of porosity was important to get spray formed preform with a good mechanical property.

  • PDF

Effect of Ambient Conditions on Spray Behavior of Gasoline Injector (가솔린 분무 거동에 미치는 분위기 조건의 영향)

  • 이창식;이기형;최수천;권상일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.27-32
    • /
    • 2000
  • The main objective of this work is to investigate the effect of ambient conditions on the spray behavior and spray characteristics of high-pressure fuel injector. For this purpose, the effects of ambient pressure and temperature on the spray characteristics have been studied by applying the analysis of visualization system and phase Doppler particle analyzer. In this experiment, the visualization of spray behavior was performed under various ambient gas conditions and injection parameters such as gas temperature, ambient pressure, injection pressure of injector, and axial distance from the nozzle tip. Based on the investigation results, the spray tip penetration and spray width decrease with the increase of ambient gas pressure in the spray chamber. The effects of the spray parameters on the microscopic characteristics of gasoline spray were discussed.

  • PDF

Dispersion Characteristics of Sprays under the Condition of Solid Body Rotating Swirl (강체 선회유동 조건에서의 분무 분산 특성에 관한 연구)

  • 이충훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.16-23
    • /
    • 2001
  • Spray dispersion in high pressure diesel engines have been simulated experimentally with a special emphasis on the effect of swirl by using a liquid injection technique. A constant volume chamber was designed to be rotatable in order to generate a continuous swirl and to have the flow field closely resembling a solid body rotation. Emulsified fuel was injected into the chamber and the developing process of fuel sprays was visualized. The effect of swirl on the spray dispersion was quantified by calculating non-dimensionalized dispersion area according to the spray tip penetration length. The results show that the effect of swirl on the spray dispersion is different between short and long spray penetrations. For short range of spray tip penetration, the effect of swirl on spray dispersion is quite small. However, as the spray tip is penetrated into longer distance in spray chamber, the effect of swirl on spray dispersion becomes larger. These results can be used as a basic data for designing combustion chamber and injection system of direct injection diesel engine.

  • PDF

An experimental study on the impingement spray of a common-rail diesel injector (1) -macroscopic characteristics- (커먼레일식 디젤 인젝터의 충돌 분무에 대한 실험적 연구(1) -거시적 분무 발달 과정-)

  • Lee, C.S.;Park, S.W.;Seo, S.H.
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.10-18
    • /
    • 2003
  • In this paper, experimental study on the wan impingement spray of the common-rail diesel injector is performed. To examine the effect of various factors on the development of spray impinging on the wall, experiments were conducted at the various injection pressures. ambient pressures, wan distances from the injector tip, wall temperatures, and angles of wall inclination. The behaviors of the impingement spray ate visualized by using laser sheet methods and a ICCD camera. It is shown that the spray path penetration of the wall impingement spray increases with the increase of injection pressure, wall distance. wall temperature, wall angle. On the other hand the spray path penetration of the wan impingement spray decreases with the increase of ambient pressure.

  • PDF

Study on Minimum Heat Flux Point in Spray Cooling of Hot Plate (고온 강판의 분무냉각에 있어서 MHF 점에 관한 연구)

  • Kim, Yeung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.175-180
    • /
    • 2001
  • In this study, the minimum heat flux conditions are experimentally investigated for the spray cooling of hot plate. The hot plates are cooled down from the initial temperature of about $900^{\circ}C$, and the local heat flux and surface temperatures are calculated from the measured temperature-time history. The results show that the minimum heat flux point temperatures increase linearly resulting from the propagation of wetting front with the increase of the distance from the stagnation point of spray flow. However, in the wall region, the minimum heat flux point temperature becomes independent of the distance. Also, the experimental results show that the velocity of wetting front increases with the increase of the droplet flow rate.

  • PDF

Numerical Analysis of Ignition and Flame Propagation in the Air/Fuel Spray Mixture (공기/연료분무 혼합기의 점화 및 화염전파 해석)

  • ;;Kim, Sung-Jun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3352-3359
    • /
    • 1995
  • An Eulerian-Lagrangian method is employed to simulate the ignition process and the flame propagation through the air/fuel spray mixture in a closed constant-volume combustor. The spray mixture is ignited by providing a hot wall at the end of the combustor or by firing the electric spark. The investigated parameters involve the initial droplet size, overall equivalence ratio, initial fuel vapor concentration, distance between the hot wall and the nearest droplet, and the ignition energy. Numerical results clearly show the existence of the optimum spray condition for minimizing the ignition energy and the ignition delay time as well as the critical dependence of ignition upon the distance of the heat source to the nearest droplet.

Film Boiling Heat Transfer Model of Spray Cooling Focusing on Rebound Motion of Droplets (액적의 리바운드 모션에 주목한 분무냉각 막비등 열전달 모델)

  • Kim, Yeung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1317-1322
    • /
    • 2004
  • In this report, the heat transfer model of spray cooling on hot surface was developed by focusing on the effect of rebound motion of droplets. In the model, it was assumed that droplets rebound repeatedly on the hot surface and heat transfer upon droplet impact is proportional to sensible heat which heats up the droplets to the saturation temperature. In addition, to take account of the contribution of th heat flux upon impact of rebound droplets, it was assumed that the rebound droplets are distributed following the Gaussian distribution from 0 to L, which distance L is determined by maximum flight distance $L_{max}$. Also the calculated results were compared with existing experimental results.

  • PDF

The Experimental Study on the Interaction of Dual Orifice Type Swirl Injectors (이중선회 분무간의 상호작용에 관한 실험적 연구)

  • Kim, H.J.;Park, B.S.;Kim, H.Y.;Chung, J.T.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.119-126
    • /
    • 2001
  • The effects of injection pressure and the distance between injectors on the droplet distribution characteristics of liquid spray for dual orifice type swirl injectors were experimentally investigated. The SMD distributions, volume concentration and Rosin- Rammler variation N of liquid spray droplets for water and a fuel were measured by using the laser diffraction particle sizer. The results of present study show that SMD decreases and spray angle increases as the injection pressure increases. The interaction of sprays from two injectors gives more uniform SMD distribution in the radial direction. As the distance between two injectors increases, SMD that is measured in the interacting region increases. The effect of viscosity on the droplet distribution in the interacting region is greater than the that of surface tension of liquid.

  • PDF