• Title/Summary/Keyword: Spray Coating

Search Result 754, Processing Time 0.04 seconds

Effects of sealing on cavitation behavior of Al-Zn-Zr thermal spray coating and sealing (Al-Zn-Zr 열용사 코팅의 캐비테이션 거동에 대한 실링의 효과)

  • Kim, Seong-Jong;Han, Min-Su;Lee, Seung-Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.245-246
    • /
    • 2009
  • The large and high-speed vessels have been greatly advanced, but ship materials have been caused the problem such as corrosion, cavitation and erosion. Cavitation can produce material damage such as pumps, turbines, valves and ship propellers etc. To solve these problems, the cavitation and electrochemical characteristics for thermal spray coating and the sealing are executed to obtain the excellent corrosion protection characteristics in sea water environment.

  • PDF

A Study on the Preparation of Ternary Transition Metal Coated-Dimensionally Stable Anode for Electrochemical Oxidation (전기화학적 산화를 위한 삼원 전이 금속 코팅 불용성 산화 전극 제조에 관한 연구)

  • Park, Jong-Hyeok;Choi, Jang-Uk;Park, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.409-416
    • /
    • 2021
  • Dimensionally stable electrodes are one of the important components in electrochemical water treatment processes. In the manufacturing of the dimensionally stable electrodes, the type of metal catalyst coated on the surface of the metal substrate, the coating and sintering methods substantially influence their performance and durability. In this study, using Ir-Ru-Ta ternary metal coating, various electrodes were prepared depending on the coating method under the same pre-treatment and sintering conditions, and its performance and durability were studied. As a coating method, brush and spray coating were used. As a result, the reduction in the amount of catalyst ink was achieved because more amount of metal could be coated for the electrode using spraying with the same amount of catalyst ink. In addition, the spray_2.0_3.0 electrode prepared by a specific spray coating method shows the phenomenon of cracking and the uniform coating of the ternary metal on the surface of the coating layer, and results in a high electrochemically active specific surface area, and the decomposition performance of 4-chlorophenol was superior to the other electrodes. However, it was found that there was no significant difference in durability depending on the coating method.

Corrosion Resistance of Cold Rolled Steel coated Organic/inorganic Hybrid Coating Solution According to Heat Treatment Temperature (유/무기 하이브리드 코팅액에 의한 냉간압연강판의 열처리 온도에 따른 내식특성)

  • Nam, Ki-Woo;Kim, Jung-Ryang;Choi, Chang-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.56-59
    • /
    • 2011
  • The demand for cold rolled steel (CR) for structural members is gradually increasing. If no surface treatment (coating for corrosion resistance) for CR is conducted, its use is very limited because CR is vulnerable to corrosion. Therefore, we need to develop a coating solution to provide high corrosion resistance for CR. In this study, an organic/inorganic coating solution with Si and Ti (Si polysilicate 7 wt.% + Urethane 13 wt.% + Ti amorphous 0.5 wt.%; LR-0727(1)) was used to evaluate the corrosion resistance of CR under a salt spray test. The specimens with the LR-0727(1) coating were heat treated in a drying oven at $120{\sim}210^{\circ}C$for 5 min. The corrosion resistance was investigated using a salt spray test of 7 h. In addition, an adhesive test was conducted. Rust showed under a heat treatment of $150^{\circ}C$, but no vestiges were found over $160^{\circ}C$. The specimens with heat treatment at $160^{\circ}C$ or more did not experience delamination. From these results, it is considered that the temperature limit for optimum heat treatment is $160^{\circ}C$ considering energy efficiency.

Effects of Powder Morphology and Powder Preheating on the Properties and Deposition Behavior of Titanium Coating Layer Manufactured by Cold Spraying (저온 분사 티타늄 코팅층의 특성 및 적층 거동에 미치는 분말 형상과 분말 예열의 영향)

  • Hwang, Jae-Nam;Lee, Myeong-Ju;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.348-355
    • /
    • 2012
  • Cold spray deposition using Titanium powder was carried out to investigate the effects of powder morphology and powder preheating on the coating properties such as porosity and hardness. The in-flight particle velocity of Ti powder in cold spray process was directly measured using the PIV (particle image velocimetry) equipment. Two types of powders (spherical and irregular ones) were used to manufacture cold sprayed coating layer. The results showed that the irregular morphology particle appeared higher in-flight particle velocity than that of the spherical one under the same process condition. The coating layer using irregular morphology powder represented lower porosity level and higher hardness. Two different preheating conditions (no preheating and preheating at $500^{\circ}C$) were used in the process of cold spraying. The porosity decreased and the hardness increased by conducting preheating at $500^{\circ}C$. It was found that the coating properties using different preheating conditions were dependent not on the particle velocity but on the deformation temperature of particle. The deposition mechanism of particles in cold spray process was also discussed based on the experimental results of in flight-particle velocity.

Dry Friction Characteristics of Bulk Amorphous Thermal Spray Coating and Amorphous Metallic Matrix Composites (벌크 비정질 용사코팅과 비정질 기지 복합재료의 건조 마찰특성)

  • Jang, Beomtaek;Yi, Seonghoon
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.108-115
    • /
    • 2014
  • The friction behaviors of bulk amorphous thermal spray coating (BAC) and second phase-reinforced composite coatings using a high velocity oxy-fuel spraying process were investigated using a ball-on-disk test rig that slides against a ceramic ball in an atmospheric environment. The surface temperatures were measured using an infrared thermometer installed 50 mm from the contact surface. The crystallinities of the coating layers were determined using X-ray diffraction. The morphologies of the coating layers and worn surfaces were observed using a scanning electron microscope and energy-dispersive spectroscopy. The results show that the friction behavior of the monolithic amorphous coating was sensitive to the testing conditions. Under lower than normal loads, a low and stable friction coefficient of about 0.1 was observed, whereas under a higher relative load, a high and unstable friction coefficient of greater than 0.3 was obtained with an instant temperature increase. For the composite coatings, a sudden increase in friction coefficient did not occur, i.e., the transition region did not exist and during the friction test, a gradual increase occurred only after a significant delay. The BAC morphology observations indicate that viscous plastic flow was generated with low loads, but severe surface damage (i.e., tearing) occurred at high loads. For composite coatings, a relatively smooth surface was observed on the worn surface for all applied loads.

Effect of Powder Preheating Temperature on the Properties of Cu based Amorphous Coatings by Cold Spray Deposition (저온분사로 제조된 Cu계 비정질 코팅층 특성에 미치는 분말 예열 온도의 영향)

  • Cho, Jin-Hyeon;Park, Dong-Yong;Lee, Jin-Kyu;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.728-733
    • /
    • 2009
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_{6}$) powders were deposited onto Al 6061 substrates by cold spray process with different powder preheating temperatures (below glass transition temperature: $350^{\circ}C$, near glass transition temperature: $430^{\circ}C$ and near crystallization temperature: $500^{\circ}C$). The microstructure and macroscopic properties (hardness, wear and corrosion) of Cu based amorphous coating layers were also investigated. X-ray diffraction results showed that cold sprayed Cu based amorphous coating layers of $300{\sim}350{\mu}m$ thickness could be well manufactured regardless of powder preheating temperature. Porosity measurements revealed that the coating layers of $430^{\circ}C$ and $500^{\circ}C$ preheating temperature conditions had lower porosity contents (0.88%, 0.93%) than that of the $350^{\circ}C$ preheating condition (4.87%). Hardness was measured as 374.8 Hv ($350^{\circ}C$), 436.3 Hv ($430^{\circ}C$) and 455.4 Hv ($500^{\circ}C$) for the Cu based amorphous coating layers, respectively. The results of the suga test for the wear resistance property also corresponded well to the hardness results. The critical anodic current density ($i_{c}$) according to powder preheating temperature conditions of $430^{\circ}C$, $500^{\circ}C$ was lower than that of the sample preheated at $350^{\circ}C$, respectively. The higher hardness, wear and corrosion resistances of the preheating conditions of near $T_{g}$ and $T_{x}$, compared to the properties of below $T_{g}$, could be well explained by the lower porosity of coating layer.