• Title/Summary/Keyword: Spray Behavior

Search Result 491, Processing Time 0.031 seconds

A Behavior Study of Diesel Spray on High Temperature (고온 분위기에서 디젤 분무의 거동에 관한 연구)

  • Ryu, H.S.;Chong, I.G.;Song, K.K.;YANO, T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.410-415
    • /
    • 2000
  • A diesel engine is one of the major prime movers to its high thermal efficiency. But due to the recent attention far the environmental pollution, the emissions of diesel engine became to a important problem. So it is needed to understand the characteristics of diesel spray injected into a combustion chamber. The factor which controls the diesel spray are the injection pressure, the nozzle diameter, the impinging angle and the variation of pressure and temperature. In this paper, experiments were conducted far the variation of the environmental temperature(273k, 373k, 573k), free spray and impinging spray. And the notions of penetration, spray angle, axial distance for free spray, and axial distance, spray thickness from impinging wall fur impinging spray.

  • PDF

SEDATIVE EFFECT OF INTRANASAL ADMINISTRATION WITH MIDAZOLAM IN SEDATING PEDIATRIC DENTAL PATIENTS (Midazolam의 비강내 투여시 의식진정효과에 관한 연구)

  • Kang, Dug-Il;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.4
    • /
    • pp.772-781
    • /
    • 1998
  • The purpose of this study was to assess the sedative effect of intranasal spray with midazolam for management of the uncooperative 20 children aged from 24 months to 92 months who required extensive treatment. The patients were given randomly a dose of 0.2mg/kg of intranasal placebo, intranasal spray with midazolam, and intranasal drop with midazolam. All the children were restrained in a pediwrap and were monitored with pulse oximeter for assessing the pulse rate and peripheral oxygen saturation. According to Fukuta's behavior rating scale, behavior was checked for evaluation of the clinical sedative effect. The obtained results were as follows: 1. Behavior score of intranasal spray with midazolam was lower than intranasal drop with midazolam(P<0.01). 2. Pulse rate was a significant change as a function of dental procedure(P<0.001), however the peripheral oxygen saturation was not influenced significantly by either adiministration route of drug or dental procedure. Clinically, intranasal spray with midazolam were safe and effective sedation in young children undergoing pediatric dental procedures.

  • PDF

Effects of Process Parameters on the Wear Behavior of Thermally Sprayed Ni-based Hard Coatings (니켈기 경질 용사코팅의 마모거동에 미치는 공정조건의 영향)

  • Kim, Kyun-Tak;Kim, Yeong-Sik
    • Tribology and Lubricants
    • /
    • v.26 no.3
    • /
    • pp.157-161
    • /
    • 2010
  • This study investigated the effects of spray parameters on wear behavior of the Ni-based hard coatings fabricated by thermal spray process. The experiment was designed by an orthogonal array, the Ni-based hard coatings were fabricated according to this experimental design. The wear test was performed on these coatings using ball-on-disk wear tester. The ANOVA was used to analyze the effects of spray parameters on the wear rate of these coatings, as a result, oxygen gas flow and acetylene gas flow were determined as main factors effected on the wear rate. The effects of these two factors on wear behavior were observed by using SEM and EDX.

A Study on the Disintegration and Spreading Behavior of Fuel-spray Emanating from a Liquid-thruster Injector by Pseudo-3D Spatial Distribution Measurement (준3차원적 공간분포 계측에 의한 액체추력기 인젝터 연료분무의 분열 및 확산 거동에 관한 연구)

  • Kim, Jin-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.9-17
    • /
    • 2008
  • Pseudo-3D spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-propellant thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio ($L/d_o$) of 1.67 and under the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray. Although the distribution of spray characteristic parameters is symmetric against the geometric axis of nozzle orifice, their absolute values are asymmetric.

Effect of Flame Spray Distance on Particle Behavior and Morphological Characteristics of $Ni_{20}Cr$ Coated Layers (화염용사 거리에 따른 입자의 거동 및 $Ni_{20}Cr$ 코팅층 특성 연구)

  • Lee, Jae Bin;Shin, Dong Hwan;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.128-133
    • /
    • 2012
  • The present study aims to examine the influence of flame spray distance on the thermal behavior of micro-metal particles and the morphological characteristics of $Ni_{20}Cr$ layers coated on the preheated SCM415 substrates by using the conventional flame spray system. Commercially available nickel-based $Ni_{20}Cr$ particles with a mean diameter of $45{\mu}m$ were used. In addition, CFD simulations using a commercial code (FLUENT ver. 6.3.26) were conducted to estimate temperature and velocity distributions of the continuous and discrete phases before impact on the substrate. From FE-SEM images of coated layers on the substrates, it was observed that as the spray distance decreased, the metal particle morphology showed splash-like patterns and such a short stretch shape, resulting from higher particle momentums and the impact of partially melted particles. Moreover, it was found that the spray distance should be considered as one of important parameters in controlling the porosity and the adhesion strength.

Macroscopic Behavior and Atomization Characteristics of Dimethyl Ether (Dimethyl Ether(DME) 연료의 분무 거동 및 미립화 특성)

  • Suh, Hyun-Kyu;Park, Ji-Hong;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl Ether(DME) is an alternative fuel for diesel engine, it is renewable and offers potential reductions in emissions. This work was conducted to figure out the macroscopic behavior and the atomization characteristics of DME using a common-rail injection system. The macroscopic behavior was visualized with the spray visualization system composed of a Nd;YAG laser and an ICCD camera. The atomization characteristics were investigated in terms of axial mean velocity, Sauter mean diameter(SMD) and droplet distributions obtained from a phase Doppler particle analyzer(PDPA) system. In this study, it was revealed that the macroscopic behavior and the atomization characteristics of DME are similar compared with commercial diesel fuel. However, DME fuel has a shorter spray tip penetration and a small SMD due to the effect of evaporation characteristics.

Spray Behavior Characteristics of Injector Used for HC-DeNOx Catalyst System in the Transparent Exhaust Manifold (모사 배기관 내 HC-DeNOx 촉매용 인젝터의 분무 거동 특성)

  • Lee, Dong-Hoon;Oh, Jung-Mo;Jeong, Hae-Young;Lee, Ki-Hyung;Yeo, Kwon-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.54-60
    • /
    • 2007
  • A new method that optimizes a control of hydrocarbon (HC) addition to diesel exhaust gas for HC type DeNOx catalyst system has been developed. These catalysts are called as the HC-DeNOx catalyst in this paper. The system using HC-DeNOx catalyst requires a resonable quantity of hydrocarbons addition in the inlet gas of the catalyst, because the HC concentration in a diesel engine is so low that the HC is not sufficient for NOx conversion. Generally ambient temperature in the exhaust manifold is $250{\sim}350^{\circ}C$, so spray behavior in this case is different from that of any other condions. This research shows spray behavior of injected hydrocarbons in the transparent exhaust manifold.

Effect of Thermal Energy of In-Flight Particles on Impacting Behavior for NiTiZrSiSn Bulk Metallic Glass during Kinetic Spraying (비행입자의 열 에너지에 따른 NiTiZrSiSn 벌크 비정질 분말의 적층 거동)

  • Yoon, Sang-Hoon;Kim, Soo-Ki;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.37-44
    • /
    • 2007
  • Mechanical and thermomechanical properties of the bulk metallic glass (BMG) are so unique that the deformation behavior is largely dependent on the temperature and the strain rate. Impacting behavior of NiTiZrSiSn bulk metallic glass powder during kinetic spraying was investigated in this study. Considering the impact behavior of the BMG, the kinetic spraying system was modified and attached the powder preheating system to make the transition from the inhomogeneous deformation to the homogeneous deformation of impacting BMG particle easy BMG splat formation is considered from the viewpoint of the adiabatic shear instability. It is suggested that the impact behavior of bulk metallic glass particle is determined by the competition between fracture and deformation. The bonding of the impacting NiTiZrSiSn bulk amorphous particle was primarily caused by the temperature-dependent deformation and fracture (local liquid formation) behavior.

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.

Behavior of a Diesel Spray Impinged on a Wall (벽면에 충돌하는 디젤분무의 거동)

  • Cho, I.Y.;Oh, J.H.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 1997
  • In the case of analyzing the combustion phenomena in a small high speed DI diesel engine, one demands the experimental results of the impinging spray on the wall as a basic characteristics. In the experiments presented here, diesel fuel oil was injected into a high pressure chamber in which compressed air at room temperature was charged. The single spray was impinged on a flat wall. The growth of the spray was photographed with transmitted light or scattered light. The effect of the spray axis angle to the wall on the impinging spray was revealed. Finally, the experimental results was presented, that is, the radius and height of the impinging spray was influenced by above mentioned variable.

  • PDF