• Title/Summary/Keyword: Sports Mining

Search Result 37, Processing Time 0.022 seconds

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.

Trend Analysis of Sports for All-Related Issues in Early Stage of COVID-19 Using Topic Modeling (토픽 모델링을 활용한 코로나19 초기 생활체육 이슈 분석)

  • Chung, Yunkil;Seo, Sumin;Kang, Hyunmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.57-79
    • /
    • 2022
  • COVID-19, which started in December 2019, has had a great impact on our lives in general, including politics, economy, society, and culture, and activities in sports and arts have also been significantly reduced. In the case of sports, sports for all fields in which ordinary citizens participate were particularly affected, and cases of infection in places closely related to people's lives, such as gyms, table tennis, and badminton clubs, also amplified the social fear of the spread of COVID-19. Therefore, in this study, we analyzed news articles related to sports for all at the time when COVID-19 was first spread, and investigated what issues were emerging and being discussed in the sports for all field under the COVID-19 situation. Specifically, we collected news articles dealt with sports for all issues under the COVID-19 situation from Korea's leading portal news sites and identified key sports for all issues by performing topic modeling on these articles. Through the analysis, we found meaningful issues such as COVID-19 outbreak in sports facilities and support for sports activities. In addition, through wordcloud analysis of these major issues, we visually understood the issues and identified the changes in these issues over time.

A Study of Safety Accident Prediction Model (Focusing on Military Traffic Accident Cases) (안전사고 예측모형 개발 방안에 관한 연구(군 교통사고 사례를 중심으로))

  • Ki, Jae-Sug;Hong, Myeong-Gi
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.427-441
    • /
    • 2021
  • Purpose: This study proposes a method for developing a model that predicts the probability of traffic accidents in advance to prevent the most frequent traffic accidents in the military. Method: For this purpose, CRISP-DM (Cross Industry Standard Process for Data Mining) was applied in this study. The CRISP-DM process consists of 6 stages, and each stage is not unidirectional like the Waterfall Model, but improves the level of completeness through feedback between stages. Results: As a result of modeling the same data set as the previously constructed accident investigation data for the entire group, when the classification criterion was 0.5, Significant results were derived from the accuracy, specificity, sensitivity, and AUC of the model for predicting traffic accidents. Conclusion: In the process of designing the prediction model, it was confirmed that it was difficult to obtain a meaningful prediction value due to the lack of data. The methodology for designing a predictive model using the data set was proposed by reorganizing and expanding a data set capable of rational inference to solve the data shortage.

Named Entity Recognition with Structural SVMs and Pegasos algorithm (Structural SVMs 및 Pegasos 알고리즘을 이용한 한국어 개체명 인식)

  • Lee, Chang-Ki;Jang, Myun-Gil
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.655-667
    • /
    • 2010
  • The named entity recognition task is one of the most important subtasks in Information Extraction. In this paper, we describe a Korean named entity recognition using structural Support Vector Machines (structural SVMs) and modified Pegasos algorithm. Using the proposed approach, we could achieve an 85.43% F1 and an 86.79% F1 for 15 named entity types on TV domain and sports domain, respectively. Moreover, we reduced the training time to 4% without loss of performance compared to Conditional Random Fields (CRFs).

  • PDF

A Study on FIFA Partner Adidas of 2022 Qatar World Cup Using Big Data Analysis

  • Kyung-Won, Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.164-170
    • /
    • 2023
  • The purpose of this study is to analyze the big data of Adidas brand participating in the Qatar World Cup in 2022 as a FIFA partner to understand useful information, semantic connection and context from unstructured data. Therefore, this study collected big data generated during the World Cup from Adidas participating in sponsorship as a FIFA partner for the 2022 Qatar World Cup and collected data from major portal sites to understand its meaning. According to text mining analysis, 'Adidas' was used the most 3,340 times based on the frequency of keyword appearance, followed by 'World Cup', 'Qatar World Cup', 'Soccer', 'Lionel Messi', 'Qatar', 'FIFA', 'Korea', and 'Uniform'. In addition, the TF-IDF rankings were 'Qatar World Cup', 'Soccer', 'Lionel Messi', 'World Cup', 'Uniform', 'Qatar', 'FIFA', 'Ronaldo', 'Korea', and 'Nike'. As a result of semantic network analysis and CONCOR analysis, four groups were formed. First, Cluster A named it 'Qatar World Cup Sponsor' as words such as 'Adidas', 'Nike', 'Qatar World Cup', 'Sponsor', 'Sponsor Company', 'Marketing', 'Nation', 'Launch', 'Official', 'Commemoration' and 'National Team' were formed into groups. Second, B Cluster named it 'Group stage' as words such as 'Qatar', 'Uruguay', 'FIFA' and 'group stage' were formed into groups. Third, C Cluster named it 'Winning' as words such as 'World Cup Winning', 'Champion', 'France', 'Argentina', 'Lionel Messi', 'Advertising' and 'Photograph' formed a group. Fourth, D Cluster named it 'Official Ball' as words such as 'Official Ball', 'World Cup Official Ball', 'Soccer Ball', 'All Times', 'Al Rihla', 'Public', 'Technology' was formed into groups.

Win-Loss Prediction Using AOS Game User Data

  • Ye-Ji Kim;Jung-Hye Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.23-32
    • /
    • 2023
  • E-sports, a burgeoning facet of modern sports culture, has achieved global prominence. Particularly, Aeon of Strife (AOS) games, emblematic of E-sports, blend individual player prowess with team dynamics to significantly influence outcomes. This study aggregates and analyzes real user gameplay data using statistical techniques. Furthermore, it develops and tests win-loss prediction models through machine learning, leveraging a substantial dataset of 1,149,950 individual data points and 230,234 team data points. These models, employing five machine learning algorithms, demonstrate an average accuracy of 80% for individual and 95% for team predictions. The findings not only provide insights beneficial to game developers for enhancing game operations but also offer strategic guidance to general users. Notably, the team-based model outperformed the individual-based model, suggesting its superior predictive capability.

Material as a Key Element of Fashion Trend in 2010~2019 - Text Mining Analysis - (패션 트렌트(2010~2019)의 주요 요소로서 소재 - 텍스트마이닝을 통한 분석 -)

  • Jang, Namkyung;Kim, Min-Jeong
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.551-560
    • /
    • 2020
  • Due to the nature of fashion design that responds quickly and sensitively to changes, accurate forecasting for upcoming fashion trends is an important factor in the performance of fashion product planning. This study analyzed the major phenomena of fashion trends by introducing text mining and a big data analysis method. The research questions were as follows. What is the key term of the 2010SS~2019FW fashion trend? What are the terms that are highly relevant to the key trend term by year? Which terms relevant to the key trend term has shown high frequency in news articles during the same period? Data were collected through the 2010SS~2019FW Pre-Trend data from the leading trend information company in Korea and 45,038 articles searched by "fashion+material" from the News Big Data System. Frequency, correlation coefficient, coefficient of variation and mapping were performed using R-3.5.1. Results showed that the fashion trend information were reflected in the consumer market. The term with the highest frequency in 2010SS~2019FW fashion trend information was material. In trend information, the terms most relevant to material were comfort, compact, look, casual, blend, functional, cotton, processing, metal and functional by year. In the news article, functional, comfort, sports, leather, casual, eco-friendly, classic, padding, culture, and high-quality showed the high frequency. Functional was the only fashion material term derived every year for 10 years. This study helps expand the scope and methods of fashion design research as well as improves the information analysis and forecasting capabilities of the fashion industry.

Framing city image: A content analysis of Chinese city image construction on Korean press

  • YANG Ting;LIU Jing
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.158-168
    • /
    • 2024
  • With Wenhai big data SaaS cloud platform.2.0, this study analyzed data of 135 news reports relating to Chinese city Chongqing from Yonhap News Agency and ten South Korean mainstream newspapers from May 1st, 2018 to September 30th, 2022. Under the framework of Frame Theory, this research conducted data mining and analysis on how Korean mainstream media shaped city image of Chongqing, what kind of city images were shaped from dimensions of politics, economy, society, culture & sports as well as tourism and whether they are consistent with those in Chinese media. At the last part, discussions and suggestions was made.

Design and Application of a Winning Forecast Model of the AOS Genre Game (AOS 장르 게임의 승패 예측 모형의 설계와 활용)

  • Ku, Ji-Min;Yu, Kyeonah
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Games of the AOS genre are classified as an e-sport rather than a recreational computer game. The involved statistical analyses such as game playing patterns and the season's characters gain importance due to the expertise-requiring nature of sports. In this study, the strategic analysis of computer games was conducted by using data mining techniques on League of Legend, a representative AOS game. We designed and tested a winning forecast model using winning percentage prediction techniques such as logistic regression analysis, discriminant analysis, and artificial neural networks. The game data analysis results were represented by a probabilistic graph and used in the visualization tool for game play. Experimental results of the winning forecast model showed a high classification rate of 95% on average with potential for use in establishing various strategies for game play with the visualization tool.

Exploring Social Issues of On-demand Delivery Platform Participants (뉴스 데이터 마이닝을 통한 배달 플랫폼 참여자의 사회적 이슈 분석)

  • Park, Soo Kyung;Lee, Hyeon June;Lee, Bong Gyou
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.79-85
    • /
    • 2021
  • After COVID-19, the number of individuals participating in delivery platforms has increased. They are using the participation of the delivery platform as a means of creating a new source of income as well as a means of sports and hobbies. This phenomenon is related to a social phenomenon called 'N-jober'. However, there are still few studies examining this phenomenon. Therefore, this study intends to examine the phenomenon of individual participation in delivery platforms and their issues. Text mining was performed on news data from January 2019, when COVID-19 started. As a result, social issues related to the increase in individual participation in delivery platforms were derived into 5 topics(Introduction to the Phenomenon, Characteristics of Participants, Participant's Income and Fees, Characteristics as a Job, Concern about Potential Risks). This study has significance in that it expanded the perspective of academic discussion on delivery platform business to individual participants.