• Title/Summary/Keyword: Sport shoe design

Search Result 14, Processing Time 0.026 seconds

Importance and satisfaction analysis of outdoor brand shoe selection attributes

  • KIm, So Hee;YOON, Sang Hoon;HAN, Seung Jin
    • Journal of Sport and Applied Science
    • /
    • v.5 no.2
    • /
    • pp.17-21
    • /
    • 2021
  • Purpose: This study aims to analyze the management environment Provincial and Municipal Professional Soccer Teams based on financial statements at a time when strengthening the financial soundness of domestic professional soccer teams is emphasized. Research design, data, and methodology: This study was sampled using convenience sampling and a total of 607 questionnaires were used. In this study, questionnaires were used as a survey tool, consisting of eight questions in a total of four areas, measuring demographic characteristics, shoe design, shoe functionality, shoe price, and promotion. Results: First, the importance of outdoor brand shoe selection attributes was high in cost-effectiveness, discount, and promotional models, while the satisfaction level was high in shoe size, content, and Model. Second, IPA analysis revealed shoe sizes, promotional models, and discount factors as maintenance and management continuation areas. Content factors have emerged as a competency-focused area. A sense of cushioning and wearing has emerged as an area of further improvement. As a status quo area, shoe laces and cost-effectiveness factors appeared. Conclusions: First, consumers considered the cost-effectiveness of choosing shoes, followed by discounts, and efforts are needed to diversify promotional content to maximize promotion for shoe sales. 3. Domestic outdoor brands are not yet satisfied with consumers.

Qualitative Analysis of Pressure Intensity and Center of Pressure Trajectory According to Shoe Type

  • Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.261-268
    • /
    • 2012
  • The purpose of this study was to qualitatively analyze pressure intensity and the center of pressure(COP) trajectory according to shoe type. Subjects were ten first-year female university students. The EMED-AT 25/D(Novel, Germany) was used to measure pressure intensity and COP trajectory. The COP Excursion Index(CPEI) was used for within subject test design. Independent variables were bare feet and six types of shoes. Dependent variables were center of pressure trajectory and pressure intensity. Barefeet and five toed shoes had a similar pressure intensity and COP trajectory. COP trajectory for all other shoe types showed a medial wobble at the heel. Pressure intensity for all other shoe types was related to the structure of the shoes. In conclusion, different shoe types can not only affect gait, but they can also influence foot deformities, pain, and dysfunction.

Rotational Friction of Different Soccer Stud (축구화 스터드의 형태변화에 따른 회전마찰력)

  • Lee, Joong-Sook;Park, Sang-Kyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.121-138
    • /
    • 2004
  • The design of soccer studs is important for providing friction on a variety of surfaces. We hypothesized that a certain type of soccer studs could improve performance due to high rotational friction. Thus, this study was conducted to determine the relationship between the frictional characteristics and different soccer stud design. Twelve recreational soccer players were recruited. Rotational friction data from the force plate was collected for all subjects during normal walking with 180 degree rotation. Walking speed was controlled at 1.2m/s (${\pm}\;0.1\;m/s$) with timing lights on infilled artificial turf. Three different types of soccer studs and one running shoe were tested. Repeated measures ANOVA was used to determine significance. Significant differences were found in rotational friction with four different shoes. Trx and World studs tended to have greater maximum rotational friction than the running shoe (Nova) and traditional soccer shoe(Copa Mondial). The results were as follow : world(25.95Nm) > trx(25.74Nm) > copa(22.50Nm) > nova(16.36Nm). The difference may be due to the number, location, size, and shape of studs. We concluded that stud design influences rotational friction between the shoe and surface during movement. Based on studs design and contact area, Trx with blade type studs are recommended since it showed high rotational friction for performance as well as enough contact area for stability. However, differences due to the mechanical properties of soccer studs are still being investigated.

Study on Correlation of Outsole Pattern of Sports Shoes and Frictional Coefficient (운동화 바닥창 무늬형태와 마찰계수의 상관관계 연구)

  • Lee, Jong-Nyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.3
    • /
    • pp.1-10
    • /
    • 2008
  • One of the major factors affecting maneuverability of an athlete is frictional force caused at an outsole of his shoe. The magnitude of the frictional force is closely related to pattern and hardness of outsole and roughness of ground or floor. This study then focuses on the effect of outsole pattern of sports shoes on the frictional force. After surveying outsole patterns of sports shoes in markets, we select 4 types of outsole patterns, such as straight, W, O, and wave as primary outsole patterns of sports shoe and we also select depth, pitch and slope as design parameters of each pattern. Corresponding to those patterns and design parameters, various outsole specimen are prepared for frictional experiments. After performing frictional tests with those specimen, coefficients of friction(COF) are collected and analyzed with a statistical tool to draw useful conclusion.

REVIEW OF COMPUTATIONAL MODELS FOR FOOTWEAR DESIGN AND EVALUATION (신발 설계 및 평가를 위한 컴퓨터 모델)

  • Cheung, Jason Tak-Man;Yu, Jia;Zhang, Ming
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.13-25
    • /
    • 2009
  • Existing footwear biomechanics studies rely on simplified kinetics and kinematics, plantar pressure and muscle electromyography measurements. Because of the complexity of foot-shoe interface and individualized subject response with different footwear, consistent results regarding the biomechanical performance of footwear or footwear components can yet be achieved. The computational approach can be an efficient and economic alternative to study the biomechanical interactions of foot and footwear. Continuous advancement in numerical techniques as well as computer technology has made the finite element method a versatile and successful tool for biomechanics researchdue to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions. Finite element analysis offers asystematic and economic alternative in search of more in-depth biomechanical information such as the internal stress and strain distributions of foot and footwear structures. In this paper, the current establishments and applications of the computational approach for footwear design and evaluation are reviewed.

Experimental Study of Evaluating Shoe Cushioning System Using Shock Absorption Pocket (신발의 보행 충격 완화 장치에 대한 충격 흡수력의 실험적 평가)

  • Sun Chang-Hwa;Son Kwon;Moon Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.241-248
    • /
    • 2006
  • Shoe cushioning systems are important to prevent body injuries. This study developed and evaluated a cushioning system to reduce impact force on the heel. The cushioning system suggested consist of a polyurethane pocket, which contains water and porous grains of open cell to dissipate the energy effectively. Load-displacement curves fer the shoe cushioning system were obtained from an instrumented testing machine and the results were compared with various pockets with air, water or grains. Mechanical testings showed that the pocket with 5g porous grain was the best for the cushioning system. This system can be applied to the design of various kind of sport shoes.

Biomechanical Analysis of Trail Running Shoes Applied to Korean Shoe-Lasts (한국인 족형을 적용한 트레일 러닝화의 생체역학적 분석)

  • Park, Seung-Bum;Lee, Kyung-Deuk;Kim, Dae-Woong;Yoo, Jung-Hyeon;Kim, Kyung-Hun;An, Chang-Shin;Lee, Tae-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.221-230
    • /
    • 2010
  • The purpose of this study was to analyze biomechanical factors of trail running shoes applied to korean shoe-lasts. 10 healthy male subjects with an average age of 37.2 years(SD=8.28), weight of 69.6 kg(SD=10.56) and a height of 171 cm(SD=4.93) were recruited for this study. Ten males walked on a treadmill wearing four different shoes. Foot pressure data was collected using a Pedar-X mobile system(Novel Gmbh., Germany) operating at the 1000 Hz. Surface EMG signals for tibialis anterior, gastrocnemius, vastus lateralis and biceps femoris were acquired at 1000 Hz using Noraxon TeleMyo DTS system(Noraxon Inc., USA). Foot pressure and leg muscle fatigue were measured and calculated during walking. The results are as follows: After walking 60 minutes, Type A showed a lower MPF. MPF values were significantly different from each muscle(p<.05). Therefore, Type A shoe might decrease muscle fatigue in the legs while walking. In addition, Type It showed that Type A shoe has the highest contact area and the lowest maximum pressure. As a result of the analysis, Trail running shoes will use a new design to reduce muscle fatigue and are expected to increase comfort and fitting.

Effect of Golf Shoe Design on Kinematic Variables During Driver Swing (골프화의 구조적 특성 및 내부형태에 따른 스윙의 운동학적 변인에 미치는 영향)

  • Park, Jong-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.167-177
    • /
    • 2009
  • The purpose of this study was to investigate effect of golf shoe design on kinematic variables during golf swing. Five professional male golfers with shoe size 270mm were recruited for the study. Swing motion was collected using 8 high speed camera motion analysis at a sampling of 180Hz. Kinematic variables were calculated by EVaRT 4.2 software. Driver swing was divided into four events; El(adress), E2(top), E3(impact) and E4(finish). Time, peak velocity, velocity of center of mass, velocity of the foot and ankle angle during Phase 1(El-E2), Phase 2(E2-E3), and Phase 3(E3-E4) were analyzed in order to investigate the relationship between golf shoe design and swing performance. The findings indicated that type C golf shoes would be beneficial for stability and control of movement during address and swing performance. Furthermore, faster speed of golf shoes, center of mass, and both feet were observed with Type C golf shoes. It is expected that golfers with Type C golf Shoes provide greater force as they control the center of mass faster and increase rotational force during impact compared to other golf shoes.

Development of Measurement Device for Bending Stiffness of Footwear (신발의 굽힘강성 측정 장비의 개발)

  • Lee, Jong-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1078-1084
    • /
    • 2011
  • In design of sport footwear, bending stiffness of its toe part is an important factor though it can be hardly measured. This paper introduces a device for measuring the bending stiffness. The device is simply designed with aluminum frames, one AC motor, two load-cells, one encoder and control hardwares. The mechanism measuring the bending moment of a shoe is described. Then, it was used to observe how the midsole material and design of a sports shoe affect on its bending stiffness. For the experiments, various specimens prepared, where each midsole of the specimens is different in terms of material, thickness and hardness. With those specimens, experiments were performed by using the device and then the bending stiffness was computed by applying the least square curve fitting after the bending moment data were measured. The specimen with Poly-urethane(PU) midsole has the higher bending stiffness than the one with Phylon(PH) midsole, and the midsole thickness affects more on the bending stiffness than the midsole hardness. Based on those results, it can be concluded that the measurement device can provide consistent bending stiffness data to sports footwear and the bending stiffness of a footwear measured by the developed device can be used as a major parameter in the footwear design.