• 제목/요약/키워드: Spontaneous electrical activities

검색결과 20건 처리시간 0.029초

Spontaneous Electrical Activity in Cerebellar Purkinje Neurons of Postnatal Rats

  • Nam, Sang-Chae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권4호
    • /
    • pp.355-366
    • /
    • 1997
  • Although cerebellar Purkinje cells display spontaneous electrical activity in vivo and in slice experiments, the mechanism of the spontaneous activity generation has not been clearly understood. The aim of this study was to investigate whether cerebellar Purkinje cells of postnatal rats generate spontaneous electrical activity without synaptic inputs. Dissociated cerebellar Purkinje cells were used for reducing synaptic inputs in the present study. Cerebellar Purkinje cells with dendrites were dissociated from postnatal rats using enzymatic treatment followed by mechanical trituration. Spontaneous electrical activities were recorded from dissociated cells without any stimulus using whole-cell patch clamp configuration. Two types, spontaneously firing or quiescent, of dissociated Purkinje cells were observed in postnatal rats. Both types of cells were identified as Purkinje cells using immunocytochemical staining technique with anti-calbindin after recording. Spontaneously active cells displayed two patterns of firing, repetitive and burst firings. Two thirds of dissociated Purkinje cells displayed repetitive firing and the rest of them did burst firing under same recording condition. Repetitive firing activities were maintained even after further isolation using either physical or pharmacological techniques. Neither high magnessium solution nor excitatory synaptic blockers, AP-5 and DNQX, block the spontaneous activity. These results demonstrate that spontaneous electrical activity of isolated cerebellar Purkinje cells in postnatal rats is generated by intrinsic membrane properties rather than synaptic inputs.

  • PDF

Spontaneous Electrical Activity of Cultured Interstitial Cells of Cajal from Mouse Urinary Bladder

  • Kim, Sun-Ouck;Jeong, Han-Seong;Jang, Sujeong;Wu, Mei-Jin;Park, Jong Kyu;Jiao, Han-Yi;Jun, Jae Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권6호
    • /
    • pp.531-536
    • /
    • 2013
  • Interstitial cells of Cajal (ICCs) from the urinary bladder regulate detrusor smooth muscle activities. We cultured ICCs from the urinary bladder of mice and performed patch clamp and intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) imaging to investigate whether cultured ICCs can be a valuable tool for cellular functional studies. The cultured ICCs displayed two types of spontaneous electrical activities which are similar to those recorded in intact bladder tissues. Spontaneous electrical activities of cultured ICCs were nifedipine-sensitive. Carbachol and ATP, both excitatory neurotransmitters in the urinary bladder, depolarized the membrane and increased the frequency of spike potentials. Carbachol increased $[Ca^{2+}]_i$ oscillations and basal $Ca^{2+}$ levels, which were blocked by atropine. These results suggest that cultured ICCs from the urinary bladder retain rhythmic phenotypes similar to the spontaneous electrical activities recorded from the intact urinary bladder. Therefore, we suggest that cultured ICCs from the urinary bladder may be useful for cellular and molecular studies of ICCs.

일측 전정기관 손상 흰쥐에서 동측의 내측 전정신경핵 활동성에 대한 전정기관의 전기자극 효과 (Effects of Electrical Stimulation of the Vestibular System on Neuronal Activity of the Ipsilateral Medial Vestibular Nuclei Following Unilateral Labyrinthectomy in Rats)

  • 이문영;김민선;박병림
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권3호
    • /
    • pp.263-273
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of electrical stimulation on vestibular compensation following ULX in rats. Electrical stimulation (ES) with square pulse ($100{\sim}300uA$, 1.0 ms, 100 Hz) was applied to ampullary portion bilaterally for 6 and 24 hours in rats receiving ULX. After ES, animals that showed the recovery of vestibular symptoms by counting and comparing the number of spontaneous nystagmus were selected for recording resting activity of type I, II neurons in the medial vestibular nuclei (MVN) of the lesioned side. And then the dynamic neuronal activities were recorded during sinusoidal rotation at a frequency of 0.1 Hz and 0.2 Hz. The number of spontaneous nystagmus was significantly different 24 hours (p<0.01, n=10), but not 6 hours after ULX+ES. As reported by others, the great reduction of resting activity only in the type I neurons ipsilateral to lesioned side was observed 6, 24 hours after ULX compared to that of intact labyrinthine animal. However, the significant elevation (p<0.01) of type I and reduction (p<0.01) of type II neuronal activity were seen 24 hours after ULX+ES. Interestingly, gain, expressed as maximum neuronal activity(spikes/sec)/maximum rotational velocity(deg/sec), was increased in type I cells and decreased in type II cells 24 hours after ULX+ES in response to sinusoidal rotation at frequencies of both 0.1 Hz and 0.2 Hz. This result suggests that accompanying the behavioral recovery, the electrical stimulation after ULX has beneficial effects on vestibular compensation, especially static symptoms (spontaneous nystagmus), by enhancing resting activity of type I neurons and reducing that of type II neurons.

  • PDF

Bile Acid Modulation of Gastroinstinal Smooth Muscle Contraction and Ionic Currents

  • Lee, Hye-Kyung;Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권4호
    • /
    • pp.333-338
    • /
    • 2000
  • We have examined whether bile acids can affect the electrical and mechanical activities of circular smooth muscle of canine colon and ileum, using isometric tension measurement or patch clamp technique. It was found that a dilution of canine bile $(0.03{\sim}2%\;by\;volume)$ enhanced or inhibited the amplitude of spontaneous contractions. An individual component of bile, deoxycholic acid (DCA) enhanced the frequency and amplitude of the spontaneous contractile activity at $10^{-6}\;M,$ while DCA at $10^{-4}\;M$ inhibited the contraction. Similarly, the response to cholic acid was excitatory at $10^{-5}\;M$ and inhibitory at $3{\times}10^{-4}\;M.$ Taurocholic acid at $10^{-4}\;M$ enhanced the amplitude of muscle contraction. Electrically, canine bile at 1% reversibly depolarized the colonic myocytes under current clamp mode. Bile acids also elicited non-selective cation currents under voltage clamp studies, where $K^+$ currents were blocked and the $Cl^-$ gradient was adjusted so that $E_{Cl}^-$ was equal to -70 mV, a holding potential. The non-selective cation current might explain the depolarization caused by bile acids in intact muscles. Furthermore, the bile acid regulation of electrical and mechanical activities of intestinal smooth muscle may explain some of the pathophysiological conditions accompanying defects in bile reabsorption.

  • PDF

기니피그 위 평활근의 기계적 및 전기적 활동에 대한 아데노신 효과 (Effect of Adenosine on the Mechanical and Electrical Activities of Guinea-pig Stomach)

  • 김희진;고광욱;서인석;김기환
    • The Korean Journal of Physiology
    • /
    • 제21권2호
    • /
    • pp.225-239
    • /
    • 1987
  • The effects of adenosine on the mechanical contractions and electrical activities were investigated in guinea-pig stomach. Spontaneous contractions of the antral region were recorded with force transducer, and the phasic contractions of fundic region were induced by electrical field stimulation. Electrical responses of smocth muscle cells were recored using glass capillary microelectrodes filled with 3M-KCl. Field stimulation was applied transmurally by using a pair of platinum wire (0.5 mm in diameter) placed on both sides of tissue. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. The results obtained were as follows. 1) Adenosine suppressed the spontaneous contractions of antrum in a dose-dependent manner. 2) The inhibitory effect on antral spontaneous contractions was not influenced by the administration of guanethidine $(5{\times}10^{-6}\;M)$ and atropine $10^{-6}\;M$, or in the presence of dipyridamole $10^{-7}\;M$. 3) The phasic contractions of fundus induced by electrical field stimulation, which disappeared rapidly by the addition of tetrodotoxin $(3{\times}10^{-7}\;M)$, were potentiated by adenosine in the presence of guanethidine. 4) Adenosine decreased the amplitude and the maximum rate of rise of slow waves, and the increased amplitude and rate of rise evoked in the high calcium solution or in the presence of TEA were decreased by adenosine. 5) The non-adrenergic, non-cholinergic inhibitory junction potential (IJP) was inhibited by adenosine in the antral region, while the excitatory junction potential (EJP) in the fundic region was potentiated. From the above results, the following conclusions could be made. 1) Adenosine suppresses the spontaneous contractions of antrum strip by the decrease in amplitude and rate of rise of slow waves. 2) The release of neurotransmitter(s) from non-adrenergic, non-cholinergic nerve terminals is inhibited by adenosine.

  • PDF

Effects of Prostaglandin $E_2$ on the Spontaneous Contractions and Electrical Activities of the Antral Circular Muscle in Guinea-pig Stomach

  • Kim, Jong-Yoon;Kim, Sung-Joon;Kang, Tong-Mook;Lee, Sang-Jin;Jun, Jae-Yeoul;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권3호
    • /
    • pp.361-368
    • /
    • 1998
  • The spontaneous contractions of gastric smooth muscles are regulated by slow waves, which are modulated by both nervous system and humoral agents. This study was designed to examine the effects of prostaglandin $E_2$ ($PGE_2$) on the contractile and electrical activities of antral smooth muscles in guinea-pig stomach, using an intracellular recording technique. To elucidate the underlying mechanism for its effect on contractility, ionic currents were also measured using a whole-cell patch clamp method. The basal tone by $PGE_2$ was variable, whereas the magnitude of phasic contractions was reduced ($19.0{\pm}2.1%$, n=19). The resting membrane potentials were hyperpolarized ($-4.4{\pm}0.5%$ mV, n=10), and plateau potentials were lowered ($-2.9{\pm}0.5%$ mV, n=10). In most cases, however, the initial peak potentials of slow waves were depolarized more by $PGE_2$ than those of control. The frequency of the slows wave was increased from $5.7{\pm}0.2$ cycles/min to $6.5{\pm}0.2$ (n=22). Voltage-operated $Ca^{2+}$ currents were decreased by $PGE_2$ (n=5). Voltage-operated $K^+$ currents, both Ca-dependent and Ca-independent, were increased (n=5). These results suggest that $PGE_2$ plays an important role in the modulation of gastric smooth muscle activities, and its inhibitory effects on the contractility and activities of slow waves are resulted from both decrease of $Ca^{2+}$ currents and increase of $K^+$ currents.

  • PDF

기니피그 위 평활근의 자발적 수축과 전기적 활동에 대한 $Ca^{2+}$$Ca^{2+}$-길항제 영향 (Effect of $Ca^{2+}$ and $Ca^{2+}-antagonists$ on the Spontaneous Contractions and Electrical Activities of Guinea-pig Stomach)

  • 이상호;김기환
    • The Korean Journal of Physiology
    • /
    • 제21권2호
    • /
    • pp.241-257
    • /
    • 1987
  • The effects of external $Ca^{2+}$ and $Ca^{2+}-antagonists$ on the spontaneous contractions and electrical activities were investigated in guinea-pig stomach in order to clarify the mechanism for the generation of slow waves. Electrical responses of circular smooth muscle cells were recorded using glass capillary microelectrodes filled with 3 M KCl. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) The amplitude of spontaneous contractions was maximal at around 2-4 mM $Ca^{2+}$, whereas their frequency was inversely related with external $Ca^{2+}$ within the range of 0.5 to 16 mM $Ca^{2+}$. 2) Verapamil suppressed the amplitude of spontaneous contraction in a dose-dependent manner, while the frequency of spontaneous contractions was almost not changed over the whole concentration of verapamil $(0.01{\sim}5\;mg/l)$. 3) Manganese increased both the amplitude and the frequency of spontaneous contractions dose-dependently in low $Mn^{2+}$ (below 0.05 mM $Mn^{2+}$), while their amplitude and frequency were decreased in high $Mn^{2+}$ (above 0.1 mM $Mn^{2+}$). 4) The ampltude and maximum rate of rise of slow waves were incrased in high $Ca^{2+}$ solution. In $Ca^{2+}-free$ solution, the spontaneous contractions recorded simultaneously with slow waves ceased and tonic contraction ($Ca^{2+}-free$ contracture) was developed in parallel with membrane depolarization and the disappearance of slow waves. 5) Verapamil (1 mg/1) decreased the amplitude and maximum rate of rise of slow waves and it depolarized the membrane by about 6 mV, whereas the frequency of slow waves was not affected by verapamil. 6) Manganese showed different characteristic effects between low and high $Mn^{2+}$ on the slow waves: In low $Mn^{2+}$ (0.05 mM $Mn^{2+}$), the initial rapid increases and the subsequent gradual decreases in three parameters of slow waves (amplitude, rate of rise, and frequency of slow waves) till a new steady state were observed. However, in high $Mn^{2+}$ (0.5 mM $Mn^{2+}$) slow waves disappeared and membrane was depolarized. From the above results, the following conclusions could be made: 1) $Ca^{2+}$ is necessary for a generation of the slow waves, even though it is small amount. 2) Verapamil suppresses the spontaneous contractions of gastric antral strip by the decreases in amplitude and maximum rate of rise of slow waves, while this drug does not block the $Ca^{2+}-channel$ involved in the generation of slow waves. 3) Manganese has dual actions on the $Ca^{2+}-channels$; the $Ca^{2+}-channel$ involved in the generation of slow waves (or Na-Ca exchange system) or the channel for the generation of spike potentials are stimulated by a low concentration of $Mn^{2+}$, while both the $Ca^{2+}$. Channels are blocked by high concentration of $Mn^{2+}$.

  • PDF

결장뉴 전기활동도에 대한 Ouabain과 Vanadate의 작용 (Effects of Ouabain and Vanadate on the Spontaneous Contractions and Electrical Activity in Guinea-pig Taenia Coli)

  • 박종규;김기환;서인석
    • The Korean Journal of Physiology
    • /
    • 제22권2호
    • /
    • pp.189-206
    • /
    • 1988
  • The effects of ouabain on the contractile and electrical activities were investigated in the isolated preparations of guinea-pig taenia coli, and compared with those of vanadate. Spontaneous contractions were recorded with force transducer, and electrical activites were measured by use of suction electrode, or single sucrose-gap technique. The contractions were induced by the electrical stimulation for 5 seconds every 1 minute with alternating current (60 Hz, 3.0 V/cm) through the platinum electrodes located in parallel with the long axis of the preparation. All experiments were performed in tris-buffered Tyrode solution which was aerated with $100%{\;}O_2$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) Responses of spontaneous contractions to ouabain were concentration-dependent; $10^{-7}M$ ouabain caused a rise of basal tone. Above the concentration of $10^{-6}M$ ouabain, an initial increase followed by a decrease in tension was observed. 2) A continuous spike discharge was induced by the administration of $10^{-7}M$ ouabain. Above $10^{-6}M$ ouabain, a transient initial increase followed by a decrease in spike frequency and amplitude was produced, and finally membrane potential was sustained at a certain level without a spike discharge. 3) The characteristic response to $10^{-7}M$ ouabain was not blocked by the pretreatment with $10^{-7}M$ atropine. 4) The electrically induced contractions were completely suppressed at the concentration of $2{\times}10^{-7}M$ ouabain. These contractions were blocked more rapidly in paralled with the increase in ouabain concentration. 5) Effects of vanadate on the spontaneous activities were quite different from those of ouabain; $10^{-6}M$ vanadate increased the amplitude of contractions and $10^{-5}M$ vanadate increased slightly both amplitude and frequency of spontaneous contractions. $10^{-4}M$ vanadate showed irregular phasic contractions superimposed on the increased basal tone. 6) $10^{-5}M$ vanadate depolarized the membrane potential and shortened the interval between the bursts of spike discharge, whereas $10^{-4}M$ vanadate induced continuous spike discharge with membrane depolarization. 7) Vanadate caused a characteristic inhibitory response to the contractions induced by electrical stimulation; An initial rapid inhibition of tension development and then gradual recovery to a certain level. From the above results, the following conclusions could be made: 1) The rise of basal tone at $10^{-7}M$ ouabain is due to continuous spike discharge without a silent period. The continuous spike discharge is likely to be associated with a slight membrane depolarization caused by the blockage of Na pump. 2) The biphasic response induced by above $10^{-6}M$ ouabain seems to occur by the different mechanisms. The initial increase in tension is associated with depolarization along with an increase in spike frquency, whereas the subsequent relaxation occurs through a non-electrical mechanism. 3) The characteristic response to $10^{-7}M$ ouabain is resulted not from the action on intrinsic nerve terminal, but from its direct action on the membrane of smooth muscle cells. 4) The phasic contractions superimposed on the increased basal tone at the concentration of $10^{-4}M$ vanadate is resulted from the continuous spike discharge with membrane depolarization, of which mechanism remains unknown. 5) The inhibitory action of ouabain on the electrically induced contractions suggests that the increasein intracellular Na in some way inhibits the electrically induced $Ca^{2+}$ influx. The mechanism of vanadate action on the induced contractions remains unknown.

  • PDF

급성저혈압에 의한 내측전정신경핵 신경세포의 흥분성 변화를 분석하기 위한 테트로드 기법의 적용 (Application of Tetrode Technology for Analysis of Changes in Neural Excitability of Medial Vestibular Nucleus by Acute Arterial Hypotension)

  • 김영;구호;박병림;문세진;양승범;김민선
    • Research in Vestibular Science
    • /
    • 제17권4호
    • /
    • pp.142-151
    • /
    • 2018
  • Objectives: Excitability o medial vestibular nucleus (MVN) in the brainstem can be affected by changes in the arterial blood pressure. Several animal studies have demonstrated that acute hypotension results in the alteration of multiunit activities and expression of cFos protein in the MVN. In the field of extracellular electrophysiological recording, tetrode technology and spike sorting algorithms can easily identify single unit activity from multiunit activities in the brain. However, detailed properties of electrophysiological changes in single unit of the MVN during acute hypotension have been unknown. Methods: Therefore, we applied tetrode techniques and electrophysiological characterization methods to know the effect of acute hypotension on single unit activities of the MVN of rats. Results: Two or 3 types of unit could be classified according to the morphology of spikes and firing properties of neurons. Acute hypotension elicited 4 types of changes in spontaneous firing of single unit in the MVN. Most of these neurons showed excitatory responses for about within 1 minute after the induction of acute hypotension and then returned to the baseline activity 10 minutes after the injection of sodium nitroprusside. There was also gradual increase in spontaneous firing in some units. In contrast small proportion of units showed rapid reduction of firing rate just after acute hypotension. Conclusions: Therefore, application of tetrode technology and spike sorting algorithms is another method for the monitoring of electrical activity of vestibular nuclear during acute hypotension.

Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice

  • Goo, Yong-Sook;Ahn, Kun-No;Song, Yeong-Jun;Ahn, Su-Heok;Han, Seung-Kee;Ryu, Sang-Baek;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권6호
    • /
    • pp.415-422
    • /
    • 2011
  • Previously, we reported that besides retinal ganglion cell (RGC) spike, there is ~10 Hz oscillatory rhythmic activity in local field potential (LFP) in retinal degeneration model, rd1 mice. The more recently identified rd10 mice have a later onset and slower rate of photoreceptor degeneration than the rd1 mice, providing more therapeutic potential. In this study, before adapting rd10 mice as a new animal model for our electrical stimulation study, we investigated electrical characteristics of rd10 mice. From the raw waveform of recording using $8{\times}8$ microelectrode array (MEA) from in vitro-whole mount retina, RGC spikes and LFP were isolated by using different filter setting. Fourier transform was performed for detection of frequency of bursting RGC spikes and oscillatory field potential (OFP). In rd1 mice, ~10 Hz rhythmic burst of spontaneous RGC spikes is always phase-locked with the OFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, there is a strong phase-locking tendency between the spectral peak of bursting RGC spikes (~5 Hz) and the first peak of OFP (~5 Hz) across different age groups. But this phase-locking property is not robust as in rd1 retina, but maintains for a few seconds. Since rd1 and rd10 retina show phase-locking property at different frequency (~10 Hz vs. ~5 Hz), we expect different response patterns to electrical stimulus between rd1 and rd10 retina. Therefore, to extract optimal stimulation parameters in rd10 retina, first we might define selection criteria for responding rd10 ganglion cells to electrical stimulus.