• Title/Summary/Keyword: Spoken document retrieval

Search Result 5, Processing Time 0.016 seconds

Spoken Document Retrieval Based on Phone Sequence Strings Decoded by PVDHMM (PVDHMM을 이용한 음소열 기반의 SDR 응용)

  • Choi, Dae-Lim;Kim, Bong-Wan;Kim, Chong-Kyo;Lee, Yong-Ju
    • MALSORI
    • /
    • no.62
    • /
    • pp.133-147
    • /
    • 2007
  • In this paper, we introduce a phone vector discrete HMM(PVDHMM) that decodes a phone sequence string, and demonstrates the applicability to spoken document retrieval. The PVDHMM treats a phone recognizer or large vocabulary continuous speech recognizer (LVCSR) as a vector quantizer whose codebook size is equal to the size of its phone set. We apply the PVDHMM to decode the phone sequence strings and compare the outputs with those of a continuous speech recognizer(CSR). Also we carry out spoken document retrieval experiment through PVDHMM word spotter on the phone sequence strings which are generated by phone recognizer or LVCSR and compare its results with those of retrieval through the phone-based vector space model.

  • PDF

N-gram Based Robust Spoken Document Retrievals for Phoneme Recognition Errors (음소인식 오류에 강인한 N-gram 기반 음성 문서 검색)

  • Lee, Su-Jang;Park, Kyung-Mi;Oh, Yung-Hwan
    • MALSORI
    • /
    • no.67
    • /
    • pp.149-166
    • /
    • 2008
  • In spoken document retrievals (SDR), subword (typically phonemes) indexing term is used to avoid the out-of-vocabulary (OOV) problem. It makes the indexing and retrieval process independent from any vocabulary. It also requires a small corpus to train the acoustic model. However, subword indexing term approach has a major drawback. It shows higher word error rates than the large vocabulary continuous speech recognition (LVCSR) system. In this paper, we propose an probabilistic slot detection and n-gram based string matching method for phone based spoken document retrievals to overcome high error rates of phone recognizer. Experimental results have shown 9.25% relative improvement in the mean average precision (mAP) with 1.7 times speed up in comparison with the baseline system.

  • PDF

Expected Matching Score Based Document Expansion for Fast Spoken Document Retrieval (고속 음성 문서 검색을 위한 Expected Matching Score 기반의 문서 확장 기법)

  • Seo, Min-Koo;Jung, Gue-Jun;Oh, Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2006.11a
    • /
    • pp.71-74
    • /
    • 2006
  • Many works have been done in the field of retrieving audio segments that contain human speeches without captions. To retrieve newly coined words and proper nouns, subwords were commonly used as indexing units in conjunction with query or document expansion. Among them, document expansion with subwords has serious drawback of large computation overhead. Therefore, in this paper, we propose Expected Matching Score based document expansion that effectively reduces computational overhead without much loss in retrieval precisions. Experiments have shown 13.9 times of speed up at the loss of 0.2% in the retrieval precision.

  • PDF

Retrieval of Broadcast News Using Audio Content Analysis

  • Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.3E
    • /
    • pp.74-79
    • /
    • 2007
  • In this paper, we report our recent work on a indexing and retrieval system of broadcast news using audio content analysis. Key issues addressed in this work are two major parts of the audio indexing system: anchorperson detection based on audio segmentation, and phone-based spoken document retrieval, developed in the framework of the emerging MPEG-7 standard. Experiments are conducted on a database of Britisch broadcast news videos. We discuss the development of the retrieval system, and the evaluation of each part and the retrieval system.

A Query-by-Speech Scheme for Photo Albuming (음성 질의 기반 디지털 사진 검색 기법)

  • Kim Tae-Sung;Suh Young-Joo;Lee Yong-Ju;Kim Hoi-Rin
    • MALSORI
    • /
    • no.57
    • /
    • pp.99-112
    • /
    • 2006
  • In this paper, we introduce two retrieval methods for photos with speech documents. We compare the pattern of speech query with those of speech documents recorded in digital cameras, and measure the similarities, and retrieve photos corresponding to the speech documents which have high similarity scores. As the first approach, a phoneme recognition scheme is used as the pre-processor for the pattern matching, and in the second one, the vector quantization (VQ) and the dynamic time warping (DTW) are applied to match the speech query with the documents in signal domain itself. Experimental results show that the performance of the first approach is highly dependent on that of phoneme recognition while the processing time is short. The second method provides a great improvement of performance. While the processing time is longer than that of the first method due to DTW, but we can reduce it by taking approximated methods.

  • PDF