• Title/Summary/Keyword: Splitting Technique

Search Result 163, Processing Time 0.028 seconds

Syntactic Analysis and Keyword Expansion for Performance Enhancement of Information Retrieval System (정보 검색 시스템의 성능 향상을 위한 구문 분석과 검색어 확장)

  • 윤성희
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.303-308
    • /
    • 2004
  • Natural language query is the best user interface for the users of information retrieval systems. This paper Proposes a retrieval system with expanded keyword from syntactically-analyzed structures of user's natural language query based on natural language processing technique. Through the steps combining or splitting the compound nouns based on syntactic tree traversal, and expanding the other-formed or shorten-formed keyword into multiple keyword, the system performance was enhanced up to 11.3% precision and 4.7% correctness.

  • PDF

Diastereomeric Strain-Promoted Azide-Alkyne Cycloaddition: determination of configuration with the 2D NMR techniques

  • Hye Jin Jeong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.2
    • /
    • pp.10-15
    • /
    • 2023
  • The Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC) is a powerful method for synthesizing triazoles, even under physiological conditions, without a copper catalyst. This technique provides an efficient means for everyone to synthesize complex triazole derivatives rapidly. In order to investigate the configuration of triazole derivatives using bicyclo[6.1.0.]-nonyne (BCN) and chiral azide, it is necessary to employ the 2D NMR. Both 1D and 2D NMR (COSY, HSQC, 15N HMBC) are used to analyze the complex triazole product containing cyclooctyne, a diastereomeric product. The stereometric difference of the proton bonded to the same carbon is determined through the HSQC assignment. The intriguing splitting pattern of carbon resonances also reveals their diastereomeric configuration and will aid in further research based on physiological knowledge.

SOI wafer formation by ion-cut process and its characterization (Ion-cut에 의한 SOI웨이퍼 제조 및 특성조사)

  • Woo H-J;Choi H-W;Bae Y-H;Choi W-B
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • The silicon-on-insulator (SOI) wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by SRIM simulation that 65keV proton implantation is required for a SOI wafer (200nm SOI, 400nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the $6\~9\times10^{16}\;H^+/cm^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. Direct wafer bonding is performed by joining two wafers together after creating hydrophilic surfaces by a modified RCA cleaning, and IR inspection is followed to ensure a void free bonding. The wafer splitting was accomplished by annealing at the predetermined optimum condition, and high temperature annealing was then performed at $1,100^{\circ}C$ for 60 minutes to stabilize the bonding interface. TEM observation revealed no detectable defect at the SOI structure, and the interface trap charge density at the upper interface of the BOX was measured to be low enough to keep 'thermal' quality.

A Study on Hybrid Split-Spectrum Processing Technique for Enhanced Reliability in Ultrasonic Signal Analysis (초음파 신호 해석의 신뢰도 개선을 위한 하이브리드 스플릿-스펙트럼 신호 처리 기술에 관한 연구)

  • Huh, H.;Koo, K.M.;Kim, G.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • Many signal-processing techniques have been found to be useful in ultrasonic and nondestructive evaluation. Among the most popular techniques are signal averaging, spatial compounding, matched filters and homomorphic processing. One of the significant new process is split-spectrum processing(SSP), which can be equally useful in signal-to-noise ratio(SNR) improvement and grain characterization in several specimens. The purpose of this paper is to explore the utility of SSP in ultrasonic NDE. A wide variety of engineering problems are reviewed, and suggestions for implementation of the technique are provided. SSP uses the frequency-dependent response of the interfering coherent noise produced by unresolvable scatters in the resolution range cell of a transducer. It is implemented by splitting the frequency spectrum of the received signal by using gaussian bandpass filter. The theoretical basis for the potential of SSP for grain characterization in SUS 304 material is discussed, and some experimental evidence for the feasibility of the approach is presented. Results of SNR enhancement in signals obtained from real four samples of SUS 304. The influence of various processing parameters on the performance of the processing technique is also discussed. The minimization algorithm, which provides an excellent SNR enhancement when used either in conjunction with other SSP algorithms like polarity-check or by itself, is also presented.

  • PDF

Modified technique for harvesting the hamstring tendons -Technical note- (슬괵건 채취를 위한 변형된 방식 -수술 수기-)

  • Kim Jin-Goo;Moon Hyung-Tae;Kim Ji-Yeong
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.3 no.1
    • /
    • pp.56-59
    • /
    • 2004
  • The hamstring tendons are popular for autografts in a variety of reconstructive procedures. The hamstring autografts are used widely for its potential advantages over the patella bone-tendon-bone(BTB) autograft, including lower graft site morbidity and easier harvesting technique. However, the use of hamstrings has potential disadvantages such as the damage of infrapatellar branches of the saphenous nerve, premature tendon amputation, and tendon split following inadequate hamstring identifications. In our studies, we used modified technique for harvesting the hamstring to decrease potential disadvantages. Reflected hamstring flap method seems to be easy and safe in avoiding nerve damage and tendon splitting. We recommend the reflected hamstring flap method for harvesting hamstring tendons.

  • PDF

2D numerical modeling of icebreaker advancing in ice-covered water

  • Sawamura, Junji
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.385-392
    • /
    • 2018
  • This paper presents 2D numerical modeling to calculate ship-ice interactions that occur when an icebreaker advances into ice-covered water. The numerical model calculates repeated icebreaking of an ice plate and removal of small ice floes. The icebreaking of the ice plate is calculated using a ship-ice contact detection technique and fluid-structural interaction of ice plate bending behavior. The ship-ice interactions in small ice floes are calculated using a physically based modeling with 3DOF rigid body equations. The ice plate is broken in crushing, bending, and splitting mode. The ice floes drift by wind or current and by the force induced by the ship-ice interaction. The time history of ice force and ice floe distribution when an icebreaker advances into the ice-covered water are obtained numerically. Numerical results demonstrate that the time history of ice force and distribution of ice floes (ice channel width) depend on the ice floe size, ship motion and ice drifting by wind or current. It is shown that the numerical model of ship maneuvering in realistic ice conditions is necessary to obtain precise information about the ship in ice-covered water. The proposed numerical model can be useful to provide data of a ship operating in ice-covered water.

Two-Dimensional Flow Behavior Through a Stage of an Axial Compressor (축류 압축기내의 2차원 유동 특성)

  • Hong, Seong-Hun;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2561-2571
    • /
    • 1996
  • The flow in the turbomachinery is very unsteady due to the stator-rotor interaction. It has been indicated that the stator-rotor interaction has three distinct causes of unsteadiness: that is, the viscous vortex shedding, wake rotor interaction and potential stator-rotor interaction. In this paper, the mechanism of unsteady potential interaction and wake interaction in the stator-rotor stage flow is numerically investigated in two-dimensional view point. The numerical technique used is the upwind scheme of Van Leer's Flux Vector Splitting(FVS) and cubic spline interpolation is applied on zonal interface. Then, the flow field of a compressor stage composed of NACA 65410 is analyzed. Flow fields are found to be simulated reasonably by this method and the sensitivity due to back-pressure variation is more stronger than rotor-velocity variation.

SURGICAL TREATMENT OF LARGE CYST ON THE MANDIBLE BY USING SAGGITAL SPLIT RAMUS OSTEOTOMY (하악골에 발생한 거대 낭종에서 하악지 시상분할골절단술을 이용한 외과적 치료)

  • Park, Hong-Ju;Ryu, Jae-Young;Kook, Min-Suk;Oh, Hee-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.100-107
    • /
    • 2008
  • First of all a good surgical access is considered among various approach methods to the cystic lesion. A poor surgical access can lead to a failure of the whole treatment. A sagittal split ramus osteotomy (SSRO) on the large cyst occurring in the mandibular ramus lets us not only reduce operation time, but can additionally contribute to a good visual field. In addition, a merit exists that it lets this operating method provide soft tissue adhesion for proximal and distal segment and decrease post operative necrosis. We experienced three cases of a large cyst on the mandibular angle and ramus. By employing a sagittal splitting of the mandible, it provided good surgical access and operation results without recurrence during a follow-up period. The surgical technique described may be helpful in treating similar large cysts.

Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle

  • Haoui, Rabah
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2011
  • The viscous flow in an axisymmetric nozzle was analyzed while accounting for the mesh sizes in both in the free stream and the boundary layer. The Navier-Stokes equations were resolved using the finite volume method in order to determine the supersonic flow parameters at the exit of the converging-diverging nozzle. The numerical technique in the aforementioned method uses the flux vector splitting of Van Leer. An adequate time stepping parameter, along with the Courant, Friedrich, Lewis coefficient and mesh size level, was selected to ensure numerical convergence. The boundary layer thickness significantly affected the viscous flow parameters at the exit of the nozzle. The best solution was obtained using a very fine grid, especially near the wall at which a strong variation of velocity, temperature and shear stress was observed. This study confirmed that the boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value. The nozzles are used at the exit of the shock tube in order to obtain supersonic flows for various tests. They also used in propulsion to obtain the thrust necessary to the displacement of the vehicles.

SS-DRM: Semi-Partitioned Scheduling Based on Delayed Rate Monotonic on Multiprocessor Platforms

  • Senobary, Saeed;Naghibzadeh, Mahmoud
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.43-56
    • /
    • 2014
  • Semi-partitioned scheduling is a new approach for allocating tasks on multiprocessor platforms. By splitting some tasks between processors, semi-partitioned scheduling is used to improve processor utilization. In this paper, a new semi-partitioned scheduling algorithm called SS-DRM is proposed for multiprocessor platforms. The scheduling policy used in SS-DRM is based on the delayed rate monotonic algorithm, which is a modified version of the rate monotonic algorithm that can achieve higher processor utilization. This algorithm can safely schedule any system composed of two tasks with total utilization less than or equal to that on a single processor. First, it is formally proven that any task which is feasible under the rate monotonic algorithm will be feasible under the delayed rate monotonic algorithm as well. Then, the existing allocation method is extended to the delayed rate monotonic algorithm. After that, two improvements are proposed to achieve more processor utilization with the SS-DRM algorithm than with the rate monotonic algorithm. According to the simulation results, SS-DRM improves the scheduling performance compared with previous work in terms of processor utilization, the number of required processors, and the number of created subtasks.