DOI QR코드

DOI QR Code

Diastereomeric Strain-Promoted Azide-Alkyne Cycloaddition: determination of configuration with the 2D NMR techniques

  • Hye Jin Jeong (Department of Chemistry, Colorado State University)
  • Received : 2023.06.13
  • Accepted : 2023.06.19
  • Published : 2023.06.20

Abstract

The Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC) is a powerful method for synthesizing triazoles, even under physiological conditions, without a copper catalyst. This technique provides an efficient means for everyone to synthesize complex triazole derivatives rapidly. In order to investigate the configuration of triazole derivatives using bicyclo[6.1.0.]-nonyne (BCN) and chiral azide, it is necessary to employ the 2D NMR. Both 1D and 2D NMR (COSY, HSQC, 15N HMBC) are used to analyze the complex triazole product containing cyclooctyne, a diastereomeric product. The stereometric difference of the proton bonded to the same carbon is determined through the HSQC assignment. The intriguing splitting pattern of carbon resonances also reveals their diastereomeric configuration and will aid in further research based on physiological knowledge.

Keywords

Acknowledgement

이 작품은 교육 과학 기술부에 의해 투자 한국 연구 재단을 통해 기초 과학 연구 프로그램(NRF-2021R1A6A3A14046029)에서 보조금에 의해 지원되었다.

References

  1. M. Bialer, S. I. Johannessen, H. J. Kupferberg, R. H. Levy, P. Loiseau, and E. Perucca, Epilepsy Res. 43, 11 (2001)
  2. M. Chen, S. Lu, G. Yuan, S. Yang, and X. Du, Heterocycl. Commun. 6, 421 (2000)
  3. E. A. Sheremet, R. I. Tomanov, E. V. Trukhin, and V. M. Berestovitskaya, Russ. J. Org. Chem. 40, 594 (2004)
  4. H. C. Kolb, M. G. Finn, and K. B. Sharpless, Angew. Chem. Int. Ed. Engl. 40, 2004 (2001)
  5. N. J. Agard, J, M. Baskin, J. A. Prescher, A. Lo, and C. R. ertozzi, ACS Chem. Biol. 130, 11486 (2008)
  6. K. Adachi, T. Meguro, Y. Sakata, K. Igawa, K. Tomooka, T. Hosoya, and S. Yoshida, Chem. Commu. 56, 9823 (2020)
  7. J. Dommerholt, S. Schmidt, R. Temming, L. J. Hendriks, F. P. Rutjes, J. C. van Hst, D. J. Lefeber, P. Friedl, and F. L. van Delft, Angew. Chem. Int. Ed. Engl. 49, 9422 (2010)
  8. M. Chen, Y. Li, R. Han, Q. Chen, L. Jiang, and X. Luo, Sensors and Actuators B: Chemical. 363, 131810 (2022)
  9. J. Liu, M. A. A. Abdullah, L. Yang, and J. Wang, Anal. Chem. 92, 647 (2020)
  10. H. J. Jeong, S. Min, J. Baek, J. Kim, J. Chung, and K. Jeong, ACS Measurement Science Au 3, 134 (2023)
  11. S-R. Choi, S. K. Kim, J. Choi, and J-H. Lee, J. Kor. Magn. Reson. Soc. 26, 46 (2022)
  12. E. Kim and H-K. Cheong, J. Kor. Magn. Reson. Soc. 21, 131 (2017)
  13. J. L. C. Sousa, A. M. S. Silva, I. Alkorta, and J. Elguero, MRC 57, 512 (2019)
  14. W. Li, D. J. Hwang, D. Cremer, H. Joo, E. Kraka, J. Kim, C. R. Ross, V. Q. Nguyen, J. T. Dalton, and D. D. Miller, Chirality 6, 578 (2009)
  15. D. X. Hu, P. Grice, and S. V. Ley, JOC 77, 5198 (2012)