• Title/Summary/Keyword: Splitting Algorithm

Search Result 240, Processing Time 0.022 seconds

Suggestion for a splitting technique of the square-root operator of three dimensional acoustic parabolic equation based on two variable rational approximant with a factored denominator (인수분해 된 분모를 갖는 두 변수 유리함수 근사에 기반한 3차원 음향 포물선 방정식 제곱근 연산자의 분할기법 제안)

  • Lee, Keunhwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this study, novel approximate form of the square-root operator of three dimensional acoustic Parabolic Equation (3D PE) is proposed using a rational approximant for two variables. This form has two advantages in comparison with existing approximation studies of the square-root operator. One is the wide-angle capability. The proposed form has wider angle accuracy to the inclination angle of ${\pm}62^{\circ}$ from the range axis of 3D PE at the bearing angle of $45^{\circ}$, which is approximately three times the angle limit of the existing 3D PE algorithm. Another is that the denominator of our approximate form can be expressed into the product of one-dimensional operators for depth and cross-range. Such a splitting form is very preferable in the numerical analysis in that the 3D PE can be easily transformed into the tridiagonal matrix equation. To confirm the capability of the proposed approximate form, comparative study of other approximation methods is conducted based on the phase error analysis, and the proposed method shows best performance.

Performance Improvement of Continuous Digits Speech Recognition using the Transformed Successive State Splitting and Demi-syllable pair (반음절쌍과 변형된 연쇄 상태 분할을 이용한 연속 숫자음 인식의 성능 향상)

  • Kim Dong-Ok;Park No-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1625-1631
    • /
    • 2005
  • This paper describes an optimization of a language model and an acoustic model that improve the ability of speech recognition with Korean nit digit. Recognition errors of the language model are decreasing by analysis of the grammatical feature of korean unit digits, and then is made up of fsn-node with a disyllable. Acoustic model make use of demi-syllable pair to decrease recognition errors by inaccuracy division of a phone, a syllable because of a monosyllable, a short pronunciation and an articulation. we have used the k-means clustering algorithm with the transformed successive state splining in feature level for the efficient modelling of the feature of recognition unit . As a result of experimentations, $10.5\%$ recognition rate is raised in the case of the proposed language model. The demi-syllable pair with an acoustic model increased $12.5\%$ recognition rate and $1.5\%$ recognition rate is improved in transformed successive state splitting.

Energy Efficient Clustering Scheme in Sensor Networks using Splitting Algorithm of Tree-based Indexing Structures (트리기반 색인구조의 분할 방법을 이용한 센서네트워크의 에너지 효율적인 클러스터 생성 방법)

  • Kim, Hyun-Duk;Yu, Bo-Seon;Choi, Won-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1534-1546
    • /
    • 2010
  • In sensor network systems, various hierarchical clustering schemes have been proposed in order to efficiently maintain the energy consumption of sensor nodes. Most of these schemes, however, are hardly applicable in practice since these schemes might produce unbalanced clusters or randomly distributed clusters without taking into account of the distribution of sensor nodes. To overcome the limitations of such hierarchical clustering schemes, we propose a novel scheme called CSM(Clustering using Split & Merge algorithm), which exploits node split and merge algorithm of tree-based indexing structures to efficiently construct clusters. Our extensive performance studies show that the CSM constructs highly balanced clustering in a energy efficient way and achieves higher performance up to 1.6 times than the previous clustering schemes, under various operational conditions.

Collision Reduction Using Modified Q-Algorithm with Moving Readers in LED-ID System

  • Huynh, Vu Van;Le, Nam-Tuan;Choi, Sun-Woong;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.358-366
    • /
    • 2012
  • LED-ID (Light Emitting Diode - Identification) is one of the key technologies for identification, data transmission, and illumination simultaneously. This is the new paradigm in the identification technology environment. There are many issues are still now challenging to achieve high performance in LED-ID system. Collision issue is one of them. Actually this is the most significant issue in all identification system. LED-ID system also suffers from collision problem. In our system, collision occurs when two or more readers transmit data to tag at the same time or vice versa. There are many anti-collision protocols to resolve this problem; such as: Slotted ALOHA, Basic Frame Slotted ALOHA, Query Tree, Tree Splitting, and Q-Algorithm etc. In this paper, we propose modified Q-Algorithm to resolve collision at tag. The proposed protocol is based on Q-Algorithm and used the information of arrived readers to a tag from neighbor. The information includes transmitting slot number of readers and the number of readers that can be arrived in next slot. Our proposed protocol can reduce the numbers of collision slot and the successful time to identify all readers. In this paper our simulation and theoretical results are presented.

Numerical Analysis Method for the Flow Analysis in the Engine Cylinder (엔진실린더내의 유동해석을 위한 수치해석방법)

  • Choi J. W.;Lee Y. H.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • In general, FDM(finite difference method) and FVM(finite volume method) are used for analyzing the fluid flow numerically. However it is difficult to apply them to problems involving complex geometries, multi-connected domains, and complex boundary conditions. On the contrary, FEM(finite element method) with coordinates transformation for the unstructured grid is effective for the complex geometries. Most of previous studies have used commercial codes such as KIVA or STAR-CD for the flow analyses in the engine cylinder, and these codes are mostly based on the FVM. In the present study, using the FEM for three-dimensional, unsteady, and incompressible Navier-Stokes equation, the velocity and pressure fields in the engine cylinder have been numerically analyzed. As a numerical algorithm, 4-step time-splitting method is used and ALE(arbitrary Lagrangian Eulerian) method is adopted for moving grids. In the Piston-Cylinder, the calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

A Study on Efficient Split Algorithms for Single Moving Object Trajectory (단일 이동 객체 궤적에 대한 효율적인 분할 알고리즘에 관한 연구)

  • Park, Ju-Hyun;Cho, Woo-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2188-2194
    • /
    • 2011
  • With the development of wireless network technology, Storing the location information of a spatiotemporal object was very necessary. Each spatiotemporal object has many unnecessariness location information, hence it is inefficient to search all trajectory information of spatiotemporal objects. In this paper, we propose an efficient method which increase searching efficiency. Using EMBR(Extend Minimun Bounding Rectangle), an LinearMarge split algorithm that minimizes the volume of MBRs is designed and simulated. Our experimental evaluation confirms the effectiveness and efficiency of our proposed splitting policy.

Design and Implementation of Kernel-Level Split and Merge Operations for Efficient File Transfer in Cyber-Physical System (사이버 물리 시스템에서 효율적인 파일 전송을 위한 커널 레벨 분할 및 결합 연산의 설계와 구현)

  • Park, Hyunchan;Jang, Jun-Hee;Lee, Junseok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.249-258
    • /
    • 2019
  • In the cyber-physical system, big data collected from numerous sensors and IoT devices is transferred to the Cloud for processing and analysis. When transferring data to the Cloud, merging data into one single file is more efficient than using the data in the form of split files. However, current merging and splitting operations are performed at the user-level and require many I / O requests to memory and storage devices, which is very inefficient and time-consuming. To solve this problem, this paper proposes kernel-level partitioning and combining operations. At the kernel level, splitting and merging files can be done with very little overhead by modifying the file system metadata. We have designed the proposed algorithm in detail and implemented it in the Linux Ext4 file system. In our experiments with the real Cloud storage system, our technique has achieved a transfer time of up to only 17% compared to the case of transferring split files. It also confirmed that the time required can be reduced by up to 0.5% compared to the existing user-level method.

Predicting the splitting tensile strength of concrete using an equilibrium optimization model

  • Zhao, Yinghao;Zhong, Xiaolin;Foong, Loke Kok
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.81-93
    • /
    • 2021
  • Splitting tensile strength (STS) is an important mechanical parameter of concrete. This study offers novel methodologies for the early prediction of this parameter. Artificial neural network (ANN), which is a leading predictive method, is synthesized with two metaheuristic algorithms, namely atom search optimization (ASO) and equilibrium optimizer (EO) to achieve an optimal tuning of the weights and biases. The models are applied to data collected from the published literature. The sensitivity of the ASO and EO to the population size is first investigated, and then, proper configurations of the ASO-NN and EO-NN are compared to the conventional ANN. Evaluating the prediction results revealed the excellent efficiency of EO in optimizing the ANN. Accuracy improvements attained by this algorithm were 13.26 and 11.41% in terms of root mean square error and mean absolute error, respectively. Moreover, it raised the correlation from 0.89958 to 0.92722. This is while the results of the conventional ANN were slightly better than ASO-NN. The EO was also a faster optimizer than ASO. Based on these findings, the combination of the ANN and EO can be an efficient non-destructive tool for predicting the STS.

Traffic Engineering and Manageability for Multicast Traffic in Hybrid SDN

  • Ren, Cheng;Wang, Sheng;Ren, Jing;Wang, Xiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2492-2512
    • /
    • 2018
  • Multicast communication can effectively reduce network resources consumption in contrast with unicast. With the advent of SDN, current researches on multicast traffic are mainly conducted in the SDN scenario, thus to mitigate the problems of IP multicast such as the unavoidable difficulty in traffic engineering and high security risk. However, migration to SDN cannot be achieved in one step, hybrid SDN emerges as a transitional networking form for ISP network. In hybrid SDN, for acquiring similar TE and security performance as in SDN multicast, we redirect every multicast traffic to an appropriate SDN node before reaching the destinations of the multicast group, thus to build up a core-based multicast tree substantially which is first introduced in CBT. Based on the core SDN node, it is possible to realize dynamic control over the routing paths to benefit traffic engineering (TE), while multicast traffic manageability can also be obtained, e.g., access control and middlebox-supported network services. On top of that, multiple core-based multicast trees are constructed for each multicast group by fully taking advantage of the routing flexibility of SDN nodes, in order to further enhance the TE performance. The multicast routing and splitting (MRS) algorithm is proposed whereby we jointly and efficiently determine an appropriate core SDN node for each group, as well as optimizing the traffic splitting fractions for the corresponding multiple core-based trees to minimize the maximum link utilization. We conduct simulations with different SDN deployment rate in real network topologies. The results indicate that, when 40% of the SDN switches are deployed in HSDN as well as calculating 2 trees for each group, HSDN multicast adopting MRS algorithm can obtain a comparable TE performance to SDN multicast.

Simultaneous Wireless Information and Power Transfer in Two-hop OFDM Decode-and-Forward Relay Networks

  • Di, Xiaofei;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.152-167
    • /
    • 2016
  • This paper investigates the simultaneous wireless information and power transfer (SWIPT) for two-hop orthogonal frequency division multiplexing (OFDM) decode-and-forward (DF) relay network, where a relay harvests energy from radio frequency signals transmitted by a source and then uses the harvested energy to assist information transmission from the source to its destination. The power splitting receiver is considered at the relay. To explore the performance limit of such a SWIPT-enabled system, a resource allocation (RA) optimization problem is formulated to maximize the achievable information rate of the system, where the power allocation, the subcarrier pairing and the power splitting factor are jointly optimized. As the problem is non-convex and there is no known solution method, we first decompose it into two separate subproblems and then design an efficient RA algorithm. Simulation results demonstrate that our proposed algorithm can achieve the maximum achievable rate of the system and also show that to achieve a better system performance, the relay node should be deployed near the source in the SWIPT-enabled two-hop OFDM DF relay system, which is very different from that in conventional non-SWIPT system where the relay should be deployed at the midpoint of the line between the source and the destination.