• Title/Summary/Keyword: Split element method

Search Result 63, Processing Time 0.029 seconds

Multiscale modeling of elasto-viscoplastic polycrystals subjected to finite deformations

  • Matous, Karel;Maniatty, Antoinette M.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-396
    • /
    • 2009
  • In the present work, the elasto-viscoplastic behavior, interactions between grains, and the texture evolution in polycrystalline materials subjected to finite deformations are modeled using a multiscale analysis procedure within a finite element framework. Computational homogenization is used to relate the grain (meso) scale to the macroscale. Specifically, a polycrystal is modeled by a material representative volume element (RVE) consisting of an aggregate of grains, and a periodic distribution of such unit cells is considered to describe material behavior locally on the macroscale. The elastic behavior is defined by a hyperelastic potential, and the viscoplastic response is modeled by a simple power law complemented by a work hardening equation. The finite element framework is based on a Lagrangian formulation, where a kinematic split of the deformation gradient into volume preserving and volumetric parts together with a three-field form of the Hu-Washizu variational principle is adopted to create a stable finite element method. Examples involving simple deformations of an aluminum alloy are modeled to predict inhomogeneous fields on the grain scale, and the macroscopic effective stress-strain curve and texture evolution are compared to those obtained using both upper and lower bound models.

A Study on the Formation Process of Saam Acupuncture Method (사암침법(舍岩鍼法) 처방 형성 과정 고찰)

  • Oh, Jun-Ho;Kim, Nam-Il;Cha, Wung-Seok
    • Korean Journal of Oriental Medicine
    • /
    • v.15 no.2
    • /
    • pp.33-37
    • /
    • 2009
  • Objectives : The authors performed this study to further understand Saam acupuncture method in an aspect of formation process. Methods : We were finding Saam's idea in a preface of the book. And we analyzed Saam acupuncture patterns to understand their formation. Results & Conclusion : We assume that Saam acupuncture patterns has formed over time. We were able to split their patters into three phases. That is Primitive-phase, Basic-phase and Practical-phase. We think they are traces of Formation Process. In the first, Saam found DongHaeng-acupoints that have in common Five Element between the five viscera and acupoint. And then, he compounded other meridian's DongHeng-acupoints to control self meridian. Finally acupoints of self meridian were added.

  • PDF

A Study on the Method of Constructing and Repairing Column of Traditional Wooden Builing (전통목조건축(傳統木造建築) 기둥의 축조(築造) 및 보존방법(保存方法)에 관한 연구(硏究) 일본(日本)의 사례(事例)를 중심(中心)으로)

  • Kim, Eun Joong
    • Journal of architectural history
    • /
    • v.3 no.1
    • /
    • pp.45-55
    • /
    • 1994
  • This study deals with the method of constructing and repairing column, important element of traditional wooden building. Column should have long-lasting strength and resistance to decay and vermin because it is more important in role of structure than in that of ornament. And the rotten or the split part of wooden column should be repaired regularly or irregularly. First of all, this study treats of general character related to the life length and strength of wood. Then it describes the technical method of choosing proper wood for column and that of carpentering, painting, and mending wooden column.

  • PDF

A Study on the Dynamic Material's Characteristics of Tungsten Alloy using Split Hopkinson Pressure Bar (홉킨슨 압축봉 장치를 이용한 텅스텐 합금의 동적 재료 특성에 관한 연구)

  • Hwang, Doo-Soon;Rho, Beong-Lae;Hong, Sung-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.92-99
    • /
    • 2005
  • Tungsten heavy metal is characterized by a high density and novel combination of strength and ductility. Among them, 90W-7Ni-3Fe is used for applications, where the high specific weight of the material plays an important role. They are used as counterweights, rotating inertia members, as well as fur defense purposes(kinetic energy Penetrators, etc.). Because of these applications, it is essential to detemine the dynamic characteristics of tungsten alloy. In this paper, Explicit FEM(finite element method) is employed to investigate the dynamic characteristics of tungsten heavy metal under base of stress wave propagation theory for SHPB, and the model of specimen is divided into two parts to understand the phenomenon that stress wave penetrates through each tungsten base and matrix. This simulation results were compared to experimental one and through this program, the dynamic stress-strain curve of tungsten heavy metal can be obtained using quasi static stress-strain curve of pure tungsten and matrix.

Numerical analysis of tunnel in rock with basalt fiber reinforced concrete lining subjected to internal blast load

  • Jain, Priyanka;Chakraborty, Tanusree
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.399-406
    • /
    • 2018
  • The present study focuses on the performance of basalt fiber reinforced concrete (BFRC) lining in tunnel situated in sandstone rock when subjected to internal blast loading. The blast analysis of the lined tunnel is carried out using the three-dimensional (3-D) nonlinear finite element (FE) method. The stress-strain response of the sandstone rock is simulated using a crushable plasticity model which can simulate the brittle behavior of rock and that of BFRC lining is analyzed using a damaged plasticity model for concrete capturing damage response. The strain rate dependent material properties of BFRC are collected from the literature and that of rock are taken from the authors' previous work using split Hopkinson pressure bar (SHPB). The constitutive model performance is validated through the FE simulation of SHPB test and the comparison of simulation results with the experimental data. Further, blast loading in the tunnel is simulated for 10 kg and 50 kg Trinitrotoluene (TNT) charge weights using the equivalent pressure-time curves obtained through hydrocode simulations. The analysis results are studied for the stress and displacement response of rock and tunnel lining. Blast performance of BFRC lining is compared with that of plain concrete (PC) and steel fiber reinforced concrete (SFRC) lining materials. It is observed that the BFRC lining exhibits almost 65% lesser displacement as compared to PC and 30% lesser displacement as compared to SFRC tunnel linings.

A STUDY OF VON-MISES YIELD STRENGTH AFTER MANDIBULAR SAGITTAL SPLIT RAMUS OSTEOTOMY (하악지시상분할골절단술 시행 후 von-Miese 항복강도에 대한 유한요소법적 연구)

  • Yoon, Ok-Byung;Kim, Yeo-Gab
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.3
    • /
    • pp.196-204
    • /
    • 2002
  • For the study of its stability when the screw has been fixed after sagittal split ramus osteotomy(SSRO) of the mandible, the methods of screw arrangement are classified into two types, triangular and straight. The angles of screws to the bone surface are classified as perpendicular arrangements, the $60^{\circ}$ anterioinferior screw, known as triangular, and the most posterior screw, called straight arrangement, thus there are four types. The finite element method model has been made by using a three dimensional calculator and a supercomputer. The load directions are to the anterior teeth, premolar region, and molar region, and the bite force is 1 Kgf to each region. The distribution of stress, the von-Mises yield strength, and safety of margin refer to the total sum of transformed energy have been studied by comparison with each other. The following conclusion has been researched : 1. When shear stress is compared, in the triangular arrangement in the form of "ㄱ", the anterosuperior screw is seen at contributing to the support of the bone fragment. In the straight arrangement, substantial stress is seen to be concentrated on the most posterior angled screw. 2. When the von-Mises yield strength is compared, it seemed that the stress concentration on the angled anteroinferior screw is higher, it shows a higher possibility of fracture than any other screw. In the straight arrangement, stress appeared to be concentrated on the most posteriorly angled screw. 3. When the safety margins of the transfomed energy are compared, the energy conduction is much greater in the case of the angled screw than in the case of the perpendicular screw. The triangular arrangement in the form of "ㄱ" shows a superior clinical sign to that of the straight arrangement. Judging from the above results, when the screw fixation is made after SSRO in practical clinical cases, two screws should be inserted in the superior border of mandibular ramus and a third screw of mandibular inferior border should be inserted in the form of triangular. All screws on the bony surface should be placed perpendicularly-$90^{\circ}$ angles apparently best promote bony support and stability.

Radial Force Analysis of a Single-Phase Permanent Split Condenser Induction Motor with skewed slots (사구 슬롯이 있는 콘덴서 구동형 단상 유도 전동기의 Radial force 해석)

  • Chang, Jung-Hwan;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.241-243
    • /
    • 1996
  • This papar presents an analysing method of radial force densities acting on each stator tooth of an induction motor with skewed slots. Two-dimensional finite element method is used for electromagnetic Held analysis of an induction motor, and skew effects are considered by coupling several disks cut by planes perpendicular to the shaft. Radial force densities as a source of vibration are calculated along the surface elements of each stator tooth and its time harmonics are examined by discrete Fourier decomposition.

  • PDF

An Optimization-based Computational Method for Surface Fitting to Update the Geometric Information of An Existing B-Rep CAD Model

  • Louhichi, Borhen;Aifaoui, Nizar;Hamdi, Mounir;BenAmara, Abdelmajid;Francois, Vincent
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • For several years, researchers have focused on improving the integration of the CAD, CAM and Analysis through a better communication between the various analysis tools. This tendency to integrate the CAD/Analysis and automation of the corresponding processes requires data sharing between the various tasks using an integrated product model. We are interested in this research orientation to CAD/CAM/Analysis integration by rebuilding the CAD model (BREP), starting from the Analysis results (deformed mesh). Because this problem is complex, it requires to be split into several complementary parts. This paper presents an original interoperability process between the CAD and CAE. This approach is based on a new technique of rebuilding the CAD surface model (Nurbs, Bezier, etc.) starting from triangulation (meshed surface) as a main step of the BREP solid model. In our work, the advantages of this approach are identified using a centrifugal pump example.

Estimation of daily maximum air temperature using NOAA/AVHRR data (NOAA/AVHRR 자료를 이용한 일 최고기온 추정에 관한 연구)

  • 변민정;한영호;김영섭
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.291-296
    • /
    • 2003
  • This study estimated surface temperature by using split-window technique and NOAA/AVHRR data was used. For surface monitoring, cloud masking procedure was carried out using threshold algorithm. The daily maximum air temperature is estimated by multiple regression method using independent variables such as satellite-derived surface temperature, EDD, and latitude. When the EDD data added, the highest correlation shown. This indicates that EDD data is the necessary element for estimation of the daily maximum air temperature. We derived correlation and experience equation by three approaching method to estimate daily maximum air temperature. 1) non-considering landcover method as season, 2) considering landcover method as season, and 3) just method as landcover. The last approaching method shows the highest correlation. So cross-validation procedure was used in third method for validation of the estimated value. For all landcover type 5, the results using the cross-validation procedure show reasonable agreement with measured values(slope=0.97, intercept=-0.30, R$^2$=0.84, RMSE=4.24$^{\circ}C$). Also, for all landcover type 7, the results using the cross-validation procedure show reasonable agreement with measured values(slope=0.993, Intercept=0.062, R$^2$=0.84, RMSE=4.43$^{\circ}C$).

  • PDF

Delamination evaluation on basalt FRP composite pipe by electrical potential change

  • Altabey, Wael A.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.515-528
    • /
    • 2017
  • Since composite structures are widely used in structural engineering, delamination in such structures is an important issue of research. Delamination is one of a principal cause of failure in composites. In This study the electrical potential (EP) technique is applied to detect and locate delamination in basalt fiber reinforced polymer (FRP) laminate composite pipe by using electrical capacitance sensor (ECS). The proposed EP method is able to identify and localize hidden delamination inside composite layers without overlapping with other method data accumulated to achieve an overall identification of the delamination location/size in a composite, with high accuracy, easy and low-cost. Twelve electrodes are mounted on the outer surface of the pipe. Afterwards, the delamination is introduced into between the three layers (0º/90º/0º)s laminates pipe, split into twelve scenarios. The dielectric properties change in basalt FRP pipe is measured before and after delamination occurred using arrays of electrical contacts and the variation in capacitance values, capacitance change and node potential distribution are analyzed. Using these changes in electrical potential due to delamination, a finite element simulation model for delamination location/size detection is generated by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Response surfaces method (RSM) are adopted as a tool for solving inverse problems to estimate delamination location/size from the measured electrical potential changes of all segments between electrodes. The results show good convergence between the finite element model (FEM) and estimated results. Also the results indicate that the proposed method successfully assesses the delamination location/size for basalt FRP laminate composite pipes. The illustrated results are in excellent agreement with the experimental results available in the literature, thus validating the accuracy and reliability of the proposed technique.