• Title/Summary/Keyword: Split application of N

Search Result 98, Processing Time 0.03 seconds

Effect of Nitrogen Split Application Methods on Development of Vascular Bundle and Yield Components of Rice Cultivars

  • Lee, Dong-Jin;Chae, Je-Cheon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.4
    • /
    • pp.237-240
    • /
    • 2000
  • This experiment was conducted to evaluate the effect of split application of nitrogen(N) on development of vascular bundle(VB) and yield components of rice. Two cultivars were used in this study; IR58, an indica type and Shinunbongbyeim a japonica type. The number and total cross sectional area of the VB in the peduncle and leaf blade were more and bigger in N split application than 100 percent basal fertilizer. Nitrogen split application at necknode differentiation stage increased the number and size of the VB. Nitrogen split application resulted in increased panicle number with application of N before transplanting and at tillering stage; increased spikelets number with N application at necknode differentiation stage; and increased spikelet fertility and 1000 grain weight with N application at necknode differentiation and heading stages. Grain yield increased 7-10% in N split as compared to all basal application. The total cross sectional area of VB in peduncle closely correlated with the number of spikelets per panicle. Nitrogen management can have an impact on spikelet differentiation through more and bigger VB and increase grain yield potential.

  • PDF

Effect of Nitrogen Fertilization Levels and its Split Application of Nitrogen on Growth Characters and Productivity in Sorghum × Sudangrass Hybrids [Sorghum bicolor (L.) Moench]

  • Jung, Jeong Sung;Kim, Young-Jin;Kim, Won Ho;Lee, Sang-Hoon;Park, Hyung Soo;Choi, Ki Choon;Lee, Ki-Won;Hwang, Tae-Young;Choi, Gi-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • Nitrogen (N) fertilizer management is one of the important aspects of economic production of sorghums in sustainable agriculture. The aim of the study was to evaluate the effects of different N application rates and its split N application methods on productivity, growth characteristics, N accumulation, N use efficiency (NUE), and feed value of Sorghum ${\times}$ Sudangrass hybrids. Treatments consisted of five N application rates (0, 150, 200, 250, and $300kg\;ha^{-1}$) and two split N application methods (40% in basal N, 30% at the growing stage, and 30% after the first harvest vs. 50% in basal N and 50% after the first harvest). Plant height, leaf width, and stem diameter were increased ($p{\leq}0.05$) with increasing N fertility rates at each harvest. Chlorophyll content (expressed as SPAD values) was the highest at a rate of $300\;kg\;N\;ha^{-1)$ (first harvest, 46.32; second harvest, 33.09). It was the lowest at zero N (first harvest, 21.56; second harvest, 18.5). Total N, N uptake, and NUE were increased with higher N rates. Split N application had little effect on total N, amount of N uptake, or NUE. Total dry matter yields were the highest ($21,715\;kg\;ha^{-1}$) at a rate of $300\;kg\;N\;ha^{-1}$. It was the lowest ($10,054\;kg\;ha^{-1}$) at zero N. Our results suggest that more than $300\;kg\;N\;ha^{-1}$ can improve dry matter yield to be above 116% compared to zero N, thus enhancing the agronomic characters of sorghums. However, no significant effect had been found for split N application. Further work is needed to determine the optimal N levels and the effect of split N application rates.

Effect of Nitrogen Split Application on Growth and Yield in Direct Seeding Rice on Flooded Paddy (담수직파재배시(湛水直播栽培時) 질소분시방법(窒素分施方法)에 따른 벼 생육(生育)과 수량성(收量性))

  • Yoo, Chul-Hyun;Shin, Bog-Woo;Lee, Sang-Bog;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.4
    • /
    • pp.312-318
    • /
    • 1995
  • To investigate the effect of N split application on the increasing ratio of yield and the yield of rice, urea and slow-releasing complex for sideband placement of fertilizer were applied in Jeonbuk series of Honam plain area. Increasing ratio of yield by N split application was higher in puddled drill seeding (PDS) than flooded direct seeding surface (FDSS) under split application of 40-0-30-30% and 70-0-0-30% at basal, 3 leaf, 5 leaf and panicle initiation stage, respectively. It was also higher in LCU application of 70 % of total urea amount than urea application but was not different between two methods of seeding in urea application. Nitrogen ratio transfered to rough grain of rice was higher in FDSS than PDS, errespective of methed of split application, except for the split application of 0, 40, 30 and 30% N fertilizer at basal, 3 leaf, 5 leaf and panicle initiation stage, respectively. Nitrogen amount outflowed by artificial drainage for paddy field drying in a day after application of fertilizer was 1,134g/10a in PDS. $NH_4-N$ incerased higher in PDS than FDSS under split application of urea, while was versa under LCU application.

  • PDF

Effect of Split Nitrogen Application Times on Turf Vegetation of Creeping Bentgrass (질소 분시횟수가 Creeping Bentgrass 잔디초지의 식생에 미치는 영향)

  • Park, Sung-Jun;Cho, Nam-Ki;Kang, Young-Kil;Song, Chang-Khil;Cho, Young-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.2
    • /
    • pp.119-124
    • /
    • 2005
  • This study was conducted from March 21 to July 8 in 2004 at JeJu Island to investigate the influences of split nitrogen application times on creeping bentgrass vegetation. Nitrogen rate was 20 kg/10a and it was applied from once to 5 times. The result obtained were summarized as follows; plant height was getting longer as nitrogen was split applied from once to 5 times. So it was longest at 5 times split nitrogen application, but it was no significance from 4 to 5 times. Root length, Minolta SPAD-502 chlorophyll meter reading value, leave and root weight n[e directly proportional plant height response. Degree of land cover Iud density of creeping bentgrass increased as nitrogen was split applied from once to 5 times. But degree of land cover md density of reed decreased. The number of reed species on decreased as nitrogen was split applied from once to 5 times. Then ranking of the dominant weeds were Portulaca oleracea Polygonum hydropiper and Stellaria media (at once split time nitrogen application), Portulaca oleracea, Polygonum hydropiper and Digitaria adscendens (at 2 split times nitrogen application), Digitaria adscendens and Portulaca oleracea Polygonum hydropiper, (at 3 split times nitrogen application), Portulaca oleracea, Poa annua and Polygonum hydropiper (at 4 md 5 split times nitrogen application). These results indicate that the optimum frequency of split N applications is four times for growth of creeping bentgrass in volcanic ash soils of Jeju island.

Nitrogen Management with Split Application of Urea for Direct-Seeding Rice in Wet Paddy

  • Lee, Ho-Jin;Seo, Jun-Han;Lee, Jung-Sam;Jung, Yong-Sang;Fred E. Below
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.1
    • /
    • pp.49-53
    • /
    • 1998
  • Direct-seeding has major advantages such as labor and cost saving by eliminating preparation of seed bed and transplanting. But, it required increased input of fertilizers and pesticides because of the extended paddy period. Direct seeding in wet paddy (DSWP) gives faster growth and more uniform seedling emergence than direct-seeding in dry paddy. This research had an objective to develop an efficient N management practices for DSWP with split application of N fertilizer. A paddy field experiment was conducted to evaluate effects of starter N and N-topdressing which was delayed N application until 5-leaf stage, with comparison to transplanting (TP). Total amount of N application were two levels; 110kg and 77kg/ha. The N applications were split four times during rice growth stages; starter, topdressing at 5-leaf stage, top dressing at tillering stage, and topdressing at panicle initiation stage. DSWP had more tillers/$m^2$ than TP, but with the delayed heading. The DSWP plots which received N-topdressing at 5-leaf stage without starter N had higher leaf area index (LAI) and leaf greenness than the TP plot. Also, these DSWP plots had high leaf-N concentration at the heading stage, as calculated from leaf chlorophyll meter readings. Rice yield in DSWP with N-topdressing at 5-leaf stage was significantly higher than that in TP and in DSWP with starter N. Energy and N use efficiency were improved in DSWP with N-topdressing at 5-leaf stage. But, there were no significant differences in grain yield between the two levels of total amounts of N applications, 77kg and 110kg/ha. We concluded that starter N could not be used effectively by rice seedlings, but topdressing N at 5-leaf stage was an efficient N management for rice growth and yield in DSWP system.

  • PDF

Effect of Liquid Manure Source, Application Rate and Time on Agronomic Characteristics and Forage Yield of Winter Rye (가축분뇨의 종류, 시비량 및 시비시기가 호밀의 생육특성과 생산성에 미치는 영향)

  • Park, Jin-Gil;Kim, Jong-Duk;Kwon, Chan-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.4
    • /
    • pp.227-232
    • /
    • 2006
  • This experiment was conducted to evaluate the effect of liquid manure source, application rate and time on the agronomic characteristics and forage yield of winter rye. The experimental design was a randomized complete block design. The treatments were : CFB150=chemical fertilizer(CF) 150 N as basal, CFS150=CF 150 N as split application (75+75), SLB150=swine liquid (SL) 150 N as basal, SLS150=SL 150 N as split application (75+75), SLB300=SL 300 N as basal, SLS150=SL 300 N as split application(150+150), CLB150=cattle liquid (CL) 150 N as basal, CLS150=CL 150 N as split awlication(75+75), CLB300=CL 300 N as basal, CLS150=CL 300 N as split application(150+150). Heading date of the plant was observed on the 17th of April fur both chemical fertilizer and swine liquid, and on the 16th of April for cattle liquid. Stay green of chemical fertilizer was higher than others because of high crude protein content. Leaf was darker in high nitrogen fertilizer treatments than low N treatments. However lodging resistance was poor as nitrogen fertilizer was increased. Dry matter (DM) content of rye at chemical fertilizer was lower than liquid manure. DM yield of chemical fertilizer treatments were highest among the fertilizer source. However, DM yield of rye with application was all most same at different N application methods. The crude protein (CP) content and yield for chemical fertilizer was significantly higher than liquid manure. CP yield using split application was higher by 16% and 28%, compared to basal application. Based on the results of this study, forage production of liquid manure was lower, compared to chemical fertilizer. And split application was superior to basal application forage and protein yields, and high protein.

Efficiency of Soil and Fertilizer Nitrogen in Relation to Rice Variety and Application Time, Using $^{15}N$ Labled Fertilizer -IV. Pot experiment for split application of $^{15}N-Urea$- (중질소(重窒素)를 이용(利用)한 수도품종(水稻品種) 및 시용시기(施用時期)에 따른 토양(土壤) 및 시비질소(施肥窒素)의 효율 -IV. $^{15}N$ 요소(尿素)의 분시(分施)폿드시험(試驗)-)

  • Park, Hoon;Kim, Ung-Joo
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.150-154
    • /
    • 1982
  • Top-dressing pot experiment with $^{15}N$ urea was carried out by using three varieties. Two-split application was much better for Tongil line than 4-split. Fertilization efficiency (Fe), use efficiency (Eu) and absorbed fertilizer nitrogen efficiency (Ef) were much greater in 2-split than in 4-split. The order of Fe followed that of Ef. Grain yield and $^{15}N$ excess % among plant parts suggest that Tonsil line uptakes fertilizer nitrogen much in early stage and retranslocated well later. The order of soil nitrogen increment in plant per fertilizer nitrogen in plant $({\Delta}Ns/Nf)$ might be an index of soil nitrogen use efficiency due to fertilizer.

  • PDF

Effect of Rice Straw Treatment and Nitrogen Split Application on Nitrogen Uptake by Direct Seeding on Dry Paddy Rice (벼 건답직파 재배시 볏짚처리 및 질소분시가 질소 흡수에 미치는 영향)

  • Lee, Kyeong-Bo;Kim, Sun-Kwan;Kang, Jong-Gook;Lee, Deog-Bae;Kim, Jong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.309-313
    • /
    • 1997
  • Field experiments were conducted on Jeonbug series (Fine silty, mesic family of Aeric Fluventic Haplaquepts), to study the effect of split application of N fertilizer in combination with rice straw on N use efficiency of dry-soil-direct seeded paddy rice. Treatments involved conventional application of N (in three splits; 40% at planting, 30% at five leaf stage and at heading stage) without rice straw, all basal application of N with straw application (5000 kg/ha), N application in two splits (70% at planting and 30% at heading stage) with rice straw application and N application in three splits (40% at planting, 30% at five leaf stage, 30% at heading stage) with application of rice straw. There was Zero N plot too for the estimation of N use efficiency. Seeding was done on dry soil and the filed was flooded 32 days after seeding. The fertilizer application rates were 160, 70, and 80 kg/ha of N, $P_2O_5$ and $K_2O$, respectively. The experiment was conducted for two years, in the same filed. The apparent use efficiency of fertilizer N by rice tended to be higher under the application of rice straw when N was applied in three splits. This, however, did not increase the yield of rice significantly. Even under the application of rice straw, the apparent N use efficiency was lower when N fertilizer was applied in one dose at the planting and in two splits. The lower N use efficiency in these cases, did not yield of rice significantly. The periodical analysis of mineral N in the soil suggested that higher mineral N in the soil at the early stages was responsible for the lower apparent N use efficiency.

  • PDF

Comparative nitrogen use efficiency of urea and pig slurry for regrowth yield and nutritive value in perennial ryegrass sward

  • Park, Sang Hyun;Lee, Bok Rye;Cho, Won Mo;Kim, Tae Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.514-522
    • /
    • 2017
  • Objective: The study aimed to assess the N use efficiency (NUE) of pig slurry (in comparison with chemical fertilizer) for each regrowth yield and annual herbage production and their nutritive value. Methods: Consecutive field experiments were separately performed using a single application with a full dose of N (200 kg N/ha) in 2014 and by four split applications in 2015 in different sites. The experiment consisted of three treatments: i) control plots that received no additional N, ii) chemical fertilizer-N as urea, and iii) pig-slurry-N with five replicates. Results: The effect of N fertilization on herbage yield, N recovery in herbage, residual inorganic N in soil, and crude protein were significantly positive. When comparing the NUE between the two N sources (urea and pig slurry), pig slurry was significantly less effective for the earlier two regrowth periods, as shown by lower regrowth dry matter (DM) yield, N amount recovered in herbage, and inorganic N availability in soil at the 1st and 2nd cut compared to those of urea-applied plots. However, the effect of split application of the two N sources was significantly positive at the last two regrowth periods (at the 3rd and 4th cut). The two N sources and/or split application had little or no influence on neutral detergent fiber (NDF) content, acid detergent fiber (ADF) content, and in vitro DM digestibility, whereas cutting date was a large source of variation for these variables, resulting in a significant increase in in vitro DM digestibility for the last two regrowth periods when an increase in NDF and ADF content occurred. Split application of N reduced the N loss via nitrate leaching by 36% on average for the two N sources compared to a single application. Conclusion: The pig slurry-N was utilized as efficiently as urea-N for annual herbage yield, with a significant increase in NUE especially for the latter regrowth periods.

Effect of the Split Application Method of Fertilizer Nitrogen and Potassium on the Yield and Botanical Composition in the Spring sowing Pasture (춘파초지조성시 질소 및 가리의 분시방밥이 수량 및 식생에 미치는 영향)

  • 이혁호;박근제;정연규;이필상
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.2
    • /
    • pp.124-130
    • /
    • 1986
  • To find out the optimum split application ratios of fertilizer nitrogen and potassium in the newly opened pasture at spring, a field experiment was conducted. Two levels of nitrogen and potassium application and three split application ratios of both fertilizer were treated by split design with 4 replications. The experiment was carried out from March, 1984 to October, 1985 on the experimental field of the Livestock Experiment Station in Suweon. The results obtained are summarized as follow: 1. Total DM yield was not showed signigicant difference among split application ratios of nitrogen and potassium. 2. DM yield of grasses was 4,854 kg/ha in heavy basal application of N and $K_2$O (160 kgN: 140 kg $K_2$O/ha), it was significantly increased by 16% than of conventional dressing (80 kg N: 70 kg $K_2$O/ha). But there was almost no difference in dry matter among N and $K_2$O split application ratios. 3. Dry matter yield of legume in heavy basal dressing was decreased by 23% than that of conventional dressing. In the methods of NK application, dry matter yield of legume was tended to decrease by 3% with equal application and 9% with heavy dressing in autumn, when compared with that of heavy dressing in spring. 4. There was no significant difference in dry matter yield of native species between different basic fertilization levels, but dry matter yield of native species was decreased by 6% with equal application and more increased by 11% with heavy dressing in autumn, when compared with the yield of heavy dressing in spring. 5. In aspect of the botanical composition, the percentage distribution of grasses was increased and the ratio of legume was greatly decreased by heavy dressing at basal fertilization. Also for good maintenance of botanical composition, it is suggested that the equal split application of N and $K_2$O was desirable.

  • PDF