• 제목/요약/키워드: Split Hopkinson Bar

검색결과 109건 처리시간 0.022초

SHPB 시험 및 영상분석을 통한 고변형율 속도 하의 시멘트 복합체 물성 변화 평가 (Evaluation of Material Properties Variations of Cementitious Composites under High Strain Rate by SHPB Test and Image Analysis)

  • 조현우;이장화;민지영;박정준;문재흠
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권4호
    • /
    • pp.83-91
    • /
    • 2015
  • 충돌 또는 폭발 하중 하의 콘크리트는 정적 하중에서 가지는 재료물성과 다른 거동을 보이게 된다. 즉, 고변형율 하의 콘크리트의 재료물성은 크게 변화하게 되며, 이를 시험평가하기 위한 방법 중 압축강도와 관련된 시험법으로는 SHPB(Split Hopkinson Pressure Bar) Test가 있다. 그러나, SHPB Test는 금속과 같은 인성재료를 위해 개발된 시험방법으로서 취성재료인 콘크리트에 적용이 가능한지에 대한 검토가 추가적으로 필요하며, UHPC와 같은 섬유보강 초고성능 콘크리트에 대한 연구는 미미한 실정이다. 이에 본 연구에서는 콘크리트 시험체를 위해 제작된 SHPB Test 장비를 사용하여 일반 콘크리트 및 UHPC 시험체에 대한 시험평가를 수행하였으며, SHPB Test의 적용 적정성을 파악하기 위하여 초고속카메라를 활용한 변위영상 분석을 통한 검증을 수행하였다.

Investigation on energy dissipation and its mechanism of coal under dynamic loads

  • Feng, Junjun;Wang, Enyuan;Shen, Rongxi;Chen, Liang;Li, Xuelong;Xu, Zhaoyong
    • Geomechanics and Engineering
    • /
    • 제11권5호
    • /
    • pp.657-670
    • /
    • 2016
  • The energy dissipation of coal under dynamic loads is a major issue in geomechanics and arising extensive concerns recently. In this study, dynamic loading tests of coal were conducted using a split Hopkinson pressure bar (SHPB) system, the characteristics of dynamic behavior and energy dissipation of coal were analyzed, and the mechanism of energy dissipation was discussed based on the fracture processes of coal under dynamic loads. Experimental results indicate that the energy dissipation of coal under dynamic loads has a positive linear correlation with both incident energy and dynamic compressive strength, and the correlation coefficients between incident energy, dynamic compressive strength and the energy dissipation rate are 0.74 and 0.98, respectively. Theoretical analysis demonstrates that higher level of stress leads to greater energy released during unstable crack propagation, thus resulting in larger energy dissipation rate of coal under dynamic loads. At last, a semi-empirical energy dissipation model is proposed for describing the positive relationship between dissipated energy and stress.

Dynamic failure features and brittleness evaluation of coal under different confining pressure

  • Liu, Xiaohui;Zheng, Yu;Hao, Qijun;Zhao, Rui;Xue, Yang;Zhang, Zhaopeng
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.401-411
    • /
    • 2022
  • To obtain the dynamic mechanical properties, fracture modes, energy and brittleness characteristics of Furong Baijiao coal rock, the dynamic impact compression tests under 0, 4, 8 and 12 MPa confining pressure were carried out using the split Hopkinson pressure bar. The results show that failure mode of coal rock in uniaxial state is axial splitting failure, while it is mainly compression-shear failure with tensile failure in triaxial state. With strain rate and confining pressure increasing, compressive strength and peak strain increase, average fragmentation increases and fractal dimension decreases. Based on energy dissipation theory, the dissipated energy density of coal rock increases gradually with growing confining pressure, but it has little correlation with strain rate. Considering progressive destruction process of coal rock, damage variable was defined as the ratio of dissipated energy density to total absorbed energy density. The maximum damage rate was obtained by deriving damage variable to reflect its maximum failure severity, then a brittleness index BD was established based on the maximum damage rate. BD value declined gradually as confining pressure and strain rate increase, indicating the decrease of brittleness and destruction degree. When confining pressure rises to 12 MPa, brittleness index and average fragmentation gradually stabilize, which shows confining pressure growing cannot cause continuous damage. Finally, integrating dynamic deformation and destruction process of coal rock and according to its final failure characteristics under different confining pressures, BD value is used to classify the brittleness into four grades.

Impact Tensile Properties and Intergranular Fracture Behavior with Strain Rate Variations of Al-M g-X (X = Cr,Si) Alloy

  • Chang-Suk Han;Min-Gyu Chun;Sung-Soon Park;Seung-In Lim
    • 한국재료학회지
    • /
    • 제34권7호
    • /
    • pp.330-340
    • /
    • 2024
  • Al-Mg-Si alloys are light weight and have excellent corrosion resistance, and are attracting attention as a liner material for high-pressure hydrogen containers in hydrogen fuel cell vehicles. Because it has excellent plastic hardening properties, it is also applied to car body panel materials, but it is moderate in strength, so research to improve the strength by adding Si-rich or Cu is in progress. So far, the authors have conducted research on the intergranular fracture of alloys with excessive Si addition from the macroscopic mechanical point of view, such as specimen shape. To evaluate their impact tensile properties, the split-Hopkinson bar impact test was performed using thin plate specimens of coarse and fine grain alloys of Al-Mg-X (X = Cr,Si) alloy. The effect of the shape of the specimen on the characteristics was studied through finite element method (FEM) analysis. As a result, it was found that the intergranular fracture of the alloy with excessive Si depended on the specimen width (W)/grain size (d), which can be expressed by the specimen size and grain size. As W/d decreases, the intergranular fracture transforms into a transgranular fracture. As the strain rate increases, the fracture elongation decreases, and the fracture surface of the intergranular fracture becomes more brittle. It was confirmed that intergranular fracture occurred in the high strain rate region even in materials with small grain sizes.

열가소성 올레핀과 폴리프로필렌 소재의 변형률 속도와 온도에 따른 기계적 특성을 고려한 에어백 전개 시뮬레이션의 정확도 향상 (Strain Rate and Temperature Effects on TPO and PP for Enhanced Airbag Deployment Simulation)

  • 이세민;김규원;안재헌;한인수;김학성
    • Composites Research
    • /
    • 제37권4호
    • /
    • pp.325-329
    • /
    • 2024
  • 충돌 시 에어백 전개를 정확히 예측하기 위해서는 온도에 따른 고변형률 속도에서의 고분자 재료의 기계적 특성을 고려해야 한다. 본 연구에서는 -35℃에서 85℃까지의 다양한 환경 온도에서 스플릿-홉킨슨바 시험을 통해 열가소성올레핀(TPO)와 폴리프로필렌(PP)의 고 변형률 속도에서의 기계적 특성을 측정하였다. 이를 통해 각 변형률 속도에 대한 인장 강도와 파괴 변형률을 도출하였다. 고분자 복합재료의 인장강도가 고변형률 속도 영역으로 이동함에 따라 β-전이가 지배적이 되어 Eyring plot에서 인장 강도가 비선형적으로 증가하는 결과를 보였다. 또한, LS-DYNA 소프트웨어를 사용하여 에어백 전개에 대한 변형률 속도의 영향을 검증하기 위한 에어백 모듈 충격 시뮬레이션을 수행하였다. 준정적 변형률 속도에서의 기계적 특성만을 반영하는 것보다 변형률 속도 의존적 기계적 거동을 반영하였을 때 TPO와 PP 소재의 에어백 커버 전개를 더 정확하게 예측할 수 있음을 확인하였다.

인터리브가 삽입된 CFRP 적층판의 인성평가 (Evaluation of fracture toughness of dynamic interlaminar for CFRP laminate plates inserted interleaf)

  • 김지훈;강태식;한길영;김재열;심재기
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.91-96
    • /
    • 2001
  • In this paper, an investigation was performed on the dynamic interlaminar fracture toughness of CFRP(carbon filber rein-forcement plastics). Specimens used in this experiments are CF/PEEK laminated plates. In this experiments, Split Hopkin-sons Bar(SHPE) tes was apply to dynamic and notched flexure test. The model II fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-integral with the measured impulsive load and reac-tions at the supported points. As an experimental results the vibration amplitude of [$0^{\circ}_10 /F_4 0^{\circ}_10 $] j-aminates appear more than that of [$0^{\circ}_10 /F_2 0^{\circ}_10 $ laminates for the j-integral and displacement velocity at a measuring point. Also, it is thought that the dynamic fracture toughness of two kind specimen(CF/PEEK) with the crease of displacement velocity becomes great at a measuring point with in the range of measurement.

  • PDF

CFRP 적층판의 수지함량이 층간파괴인성치에 미치는 영향 (Interlaminar Fracture Toughness of CFRP Laminate Plates by Resin Content)

  • 강태식;김지훈;심재기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.675-678
    • /
    • 2001
  • In this paper, an investigation was performed on the dynamic interlaminar fracture toughness of CFRP(carbon fiber reinforcement plastics). Specimens used in this experiment are CF/EPOXY laminated plates. In this experiments, Split Hopkinson s Bar test was applied to dynamic and notched flexure test. The mode II fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-integral with the measured impulsive load and reactions at the supported points. As an experimental result, the vibration amplitude of 〔$0_{10}F_4/0_{10}$〕laminates appear more than that of 〔0_{10}/F_2/0_{10}$〕laminates for the J-integral and displacement velocity at a measuring point. Also, it is thought that the dynamic fracture toughness of two kind specimen with the increase of displacement velocity becomes great at a measuring point with in range of measurement.

  • PDF

수지함량에 따른 CFRP 적층판의 층간파괴 인성평가 (Evaluation of Fracture Toughness of Dynamic Interlaminar for CFRP Laminate Plates by Resin Content)

  • 김지훈;양인영;심재기
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.43-49
    • /
    • 2003
  • This research work has been carried out for finding J-integral in mode II of CFRP(carbon fiber reinforced plastics) laminate plates based on the classical bar theory in dynamic conditions with consideration of the effect of inertia forces, eventually to lead to finding the dynamic inter-layer fracture toughness. Dynamic inter-layer fracture toughness was found by a self-made ENF(End Notched Flexure) experimental apparatus using Split Hopkinson's Bar(SHPB), and also observed the variation of the fracture toughness haying different resin contents and fiber arrangements of CFRP specimen([$0_3^{\circ}/90_3^{\circ}/0_6^{\circ}/90_3^{\circ}/0_3^{\circ}$], [$0_{20}^{\circ}$], [$0_5^{\circ}/90_{10}^{\circ}/0_5^{\circ}$]). As an experimental result, in either cases of quasi-static or dynamic load condition, the critical load and the inter-layer fracture toughness increased sharply depending on the increase of resin contents. Therefore, it could, be concluded that the effect by resin contents is the major factor determining the inter-layer fracture toughness in the CFRP laminate plates.

Experimental study on the dynamic behavior of pervious concrete for permeable pavement

  • Bu, Jingwu;Chen, Xudong;Liu, Saisai;Li, Shengtao;Shen, Nan
    • Computers and Concrete
    • /
    • 제22권3호
    • /
    • pp.291-303
    • /
    • 2018
  • As the concept of "sponge city" is proposed, the pervious concrete for permeable pavement has been widely used in pavement construction. This paper aims at investigating the dynamic behavior and energy evolution of pervious concrete under impact loading. The dynamic compression and split tests are performed on pervious concrete by using split Hopkinson pressure bar equipment. The failure criterion on the basis of incubation time concept is used to analyze the dynamic failure. It is demonstrated that the pervious concrete is of a strain rate sensitive material. Under high strain rate loading, the dynamic strength increases while the time to failure approximately decreases linearly as the strain rate increases. The predicted dynamic compressive and split tensile strengths based on the failure criterion are in accordance with the experimental results. The total damage energy is found to increase with the increasing of strain rate, which means that more energy is needed to produce irreversible damage as loading rate increases. The fractal dimensions are observed increases with the increasing of impact loading rate.

CP-Ti의 동적거동에 미치는 온도의 영향 (Temperature Dependence of Dynamic Behavior of Commercially Pure Titanium by the Compression Test)

  • 이수민;서송원;박경준;민옥기
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1152-1158
    • /
    • 2003
  • The mechanical behavior of a commercially pure titanium (CP-Ti) is investigated at high temperature Split Hopkinson Pressure Bar (SHPB) compression test with high strain-rate. Tests are performed over a temperature range from room temperature to 1000$^{\circ}C$ with interval of 200$^{\circ}C$ and a strain-rate range of 1900 ∼ 2000/sec. The true flow stress-true strain relations depending on temperature are achieved in these tests. For construction of constitutive equation from the true flow stress-true strain relation, parameters for the Johnson-Cook constitutive equation is determined. And the modified Johnson-Cook equation is used for investigation of behavior of flow stress in vicinity of recrystalization temperature. The Modified Johnson-Cook constitutive equation is more suitable in expressing the dynamic behavior of a CP-Ti at high temperature, i.e. about recrystalization temperature.