• Title/Summary/Keyword: Spinel ferrite

Search Result 131, Processing Time 0.021 seconds

The Effect of Chemical Composition and Sintering Temperature on The Improvement of Physical Properties of Mn-Zn Ferrites (Mn-Zn ferrite의 성분 및 소결 온도에 따른 물리적 특성의 향상 연구)

  • 고재귀
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.269-274
    • /
    • 1995
  • The basic composition of Mn-Zn ferrite was $Mn_{0.631}Zn_{0.316}Fe_{2.053}O_{4}$(specimen A), $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) and $Mn_{0.538}Zn_{0.308}Fe_{2.154}O_{4}$(specimen C) with additional 0.1 mol % $CaCo_{3}$ and 0.04 mol % $V_{2}O_{5}$. For high per¬meability and acceleration of grain growth, $CaCo_{3}$ and $V_{2}O_{5}$. was added. The mixture of the law materials was calcinated at $950^{\circ}C$ for 3 hours and then milled. The compacts of toroidal type were sintered at different temperature($1250^{\circ}C$, $1300^{\circ}C$, $1350^{\circ}C$) for 2 hours in $N_2$ atmosphere. The effects of the various raw material composition and sintered temperature on the physical properties of Mn-Zn ferrite have been investigated. They turned out to be spinel structure by X-ray diffraction and the size of grain from SEM was from $18\;\mu\textrm{m}\;to\;23\;\mu\textrm{m}$. As the sintering temperature was increased from $1250^{\circ}C$ to $1350^{\circ}C$, the initial permeability and magnetic induction has increased and the both of Q factor and coercive force has decreased. The coercive force and curie temperature were almost the same at each specimen Their values were about 0.45 Oe and $200^{\circ}C$. The frequency of specimen will used in the range from 200 kHz to 2 MHz. The basic composition of $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) sintered at $1300^{\circ}C$ shows the best results at magnetic induction (Br & Bm).

  • PDF

Neutron Diffraction and Mössbauer Studies of Superexchange Interaction on Al Substituted Co-ferrite (Al이 치환된 Co 페라이트에 관한 뫼스바우어 분광법 및 중성자 회절 연구)

  • Kim, Sam-Jin;Myoung, Bo-Ra;Kim, Chul-Sung;Baek, Kyung-Seon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.287-292
    • /
    • 2006
  • Al substituted $CoAl_{0.5}Fe_{1.5}O_{4}$ has been studied with x-ray and neutron diffraction, $M\"{o}ssbauer$ spectroscopy and magnetization measurements. $CoAl_{0.5}Fe_{1.5}O_{4}$ revealed a cubic spinel structure of ferrinmagnetic long range ordering at room temperature, with magnetic moments of $Fe^{3+}(A)(-2.29{\mu}_{B}),\;Fe^{3+}(B)(3.81\;{\mu}_{B}),\;Co^{2+}(B)(2.66{\mu}_{B})$, respectively. The temperature dependence of the magnetic hyperfine field in $^{57}Fe$ nuclei at the tetrahedral (A) and octahedral (B) sites was analyzed based on the $N\'{e}el$ theory of magnetism. In the sample of $CoAl_{0.5}Fe_{1.5}O_{4}$, the interaction A-B interaction and intrasublattice A-A superexchange interaction were antiferromagnetic with strengths of $J_{A-B}=-19.3{\pm}0.2k_{B}\;and\;J_{A-A}=-21.6{\pm}0.2k_{B}$, respectively, while the intrasublattice B-B superexchange interaction was found to be ferromagnetic with a strength of $J_{B-B}=3.8{\pm}0.2k_{B}$.

Mössbauer Study of Crystallographic and Magnetic Properties in Vanadium Ferrite(VxFe3-xO4) Thin Films (바나듐 페라이트 박막의 결정구조 및 자기적 성질에 관한 뫼스바우어 분광학적 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The mixed ferrite $V_xFe_{3-x}O_4$(x=0.0, 0.15, 0.5, 1.0) thin films were prepared by sol-gel method. Their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). The crystal structure is found to be cubic spinel throughout the series($x{\leq}1.0$), and the lattice parameter $a_0$ increases linearly with increasing V content. XRD, XSP and CEMS indicate that $V^{3+}$ substitution for $Fe^{3+}$ in B-site is superior to $V^{2+}$ substitution for $Fe^{2+}$ in B-site. It is noticeable that both quadrupole shift and hyperfine field decreases with increasing V composition, suggesting the change of local symmetry and accompanying line-broadening. The line-broadening on CEMS spectra can be explained by the distribution of magnetic hyperfine fields.

CEMS Study of Ferrite Films M0.2Fe2.8O4 (M =Mn, Ni, Cu) (페라이트 박막 M0.2Fe2.8O4(M=Mn, Ni, Cu)의 Mössbauer 분광학적 연구)

  • Park, Jae Yun;Kim, Kwang Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.46-50
    • /
    • 2014
  • The crystallographic properties and cationic distribution of $M_{0.2}Fe_{2.8}O_4$ (M =Mn, Ni, Cu) and $Fe_3O_4$ thin films prepared by sol-gel method have been investigated by X-ray diffraction (XRD) and conversion electron M$\ddot{o}$ssbauer spectroscopy (CEMS). The ionic valence, preferred site, and hyperfine field of Fe ions of the ferrites could be obtained by analyzing the CEMS spectra. The $M_{0.2}Fe_{2.8}O_4$ films were found to maintain cubic spinel structure as in $Fe_3O_4$ with the lattice constant slightly decreased for Ni substitution and increased for Mn and Cu substitution from that of $Fe_3O_4$. Analyses on the CEMS data indicate that $Mn^{2+}$ and $Ni^{2+}$ ions substitute octahedral $Fe^{2+}$ sites mostly, while $Cu^{2+}$ ions substitute both the octahedral and tetrahedral sites. The observed intensity ratio $A_B/A_A$ of the CEMS subspectra of the samples exhibited difference from the theoretical value. It is interpreted as due to the effect of the M substitution for A and B on the Debye temperature of the site. The relative line-broadening of the B-site CEMS subspectra can be explained by the dispersion of magnetic hyperfine fields due to random distribution of M cations in the B sites.

The Effects of Cr-Substitution in Ferrite Catalysts and the Catalytic Dehydrogenation of Ethylbenzene (페라이트 촉매의 Cr 치환효과와 에틸벤젠의 탈수소반응)

  • Lim, Ki-Chul;Kim, Eul-San;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.279-288
    • /
    • 1991
  • Mg- and Zn-ferrites having spinel structure, a kind of complex oxides showing the advantageous properties of constituent single metal oxides, were selected to find a relationship between their catalytic activities in the dehydrogenation of ethylbenzene to styrene and the catalytic properties. For the structural and physical analyses of ferrites, XRD, BET, TG/DTA, ESCA, TEM, and TPD methods were employed. The effects of Cr-substitution were intensively studied by the experimental methods mentioned above. Chromium which showed a preferential tendency to diffuse to the surface acted as a structural promoter by increasing surface area and stability of catalyst structure. In the dehydrogenation of ethylbenzene, catalytic activity, and the effects of Cr-substitution were investigated. Oxygen mobility was decreased with the amount of Cr-substitution in $MgCr_xFe_{2-x}O_4$, which resulted in the increase of selectivity to styrene and the suppression of total oxidation.

  • PDF

MBE Growth and Electrical and Magnetic Properties of CoxFe3-xO4 Thin Films on MgO Substrate

  • Nguyen, Van Quang;Meny, Christian;Tuan, Duong Ahn;Shin, Yooleemi;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.370.1-370.1
    • /
    • 2014
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active areas of research. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, ~100% spin polarization (P), and has a high Curie temperature (TC~850 K). On the other hand, Spinel ferrite CoFe2O4 has been widely studies for various applications such as magnetorestrictive sensors, microwave devices, biomolecular drug delivery, and electronic devices, due to its large magnetocrystalline anisotropy, chemical stability, and unique nonlinear spin-wave properties. Here we have investigated the magneto-transport properties of epitaxial CoxFe3-xO4 thin films. The epitaxial CoxFe3-xO4 (x=0; 0.4; 0.6; 1) thin films were successfully grown on MgO (100) substrate by molecular beam epitaxy (MBE). The quality of the films during growth was monitored by reflection high electron energy diffraction (RHEED). From temperature dependent resistivity measurement, we observed that the Werwey transition (1st order metal-insulator transition) temperature increased with increasing x and the resistivity of film also increased with the increasing x up to $1.6{\Omega}-cm$ for x=1. The magnetoresistance (MR) was measured with magnetic field applied perpendicular to film. A negative transverse MR was disappeared with x=0.6 and 1. Anomalous Hall data will be discussed.

  • PDF

Complex Permeability Analysis of NiCuZn Ferrites (NiCuZn 계 페라이트의 조성에 따른 복소투자율 변화 해석)

  • 남중희;오재희
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.382-387
    • /
    • 1996
  • The characteristics of the complex permeability of ${(Ni_{x}Cu_{0.2}Zn_{0.8-x}O)}_{1-w}{(Fe_{2}O_{3})}_{1+w}$ with various Ni and $Co_{3}O_{4}$ contents were investigated in this work. It is found that the NiCuZn ferrites with $x{\geq}0.6$ have a relatively small peak width of the imaginary part of permeability $\mu$". The resonance frequency is increased as Ni content becomes higher, where the loss is low. The $\mu$" value decreases with increasing FezO, deficiency, but the resonance frequency($f_{\mu"max}$) is only slightly affected by $Fe_{2}O_{3}$ deficiency. In case of $Co_{3}O_{4}$ addition to the NiCuZn ferrites, the $f_{\mu"max}$ increases since the initial permeability decreases with the amount of $Co_{3}O_{4}$. It is concluded that the Ni content in the NiCuZn ferrite is a dominant factor for the total loss of these spinel ferrites.

  • PDF

Charge Transformation of CU-ions in CuxFe3-xO4 (χ=0.1, 0.2)

  • Lee, Choong Sub;Lee, Chan Young;Kwon, Dong Wook
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.25-28
    • /
    • 2002
  • Slowly cooled $Cu_xFe_{3-x}O_4$ ($\chi$=0.1, 0.2) have been investigated over a temperature range from 82 to 700 K using the M$\ddot{o}$ssbauer technique. X-ray diffraction shows that these have a single-phase cubic spinel structure of lattice parameters $\alpha$=8.396 and 8.398${\AA}$, respectively. Since Cu ions prefer B (octahedral) sites to A (tetrahedral) sites, the ionic distribution is $(Fe)_A[Fe_{2-x}Cu_x]_BO_4$. M$\ddot{o}$ssbauer spectra consisted of two sets of 6-line pattern from. A site in ferric state and B site in ferrous-ferric state. Intensity ratio of B to A subspectra is 1.0 at 82 K and increases to 2.0 at 700 K with increasing temperature. After annealing the samples under vacuum at $450^circ{C}$ for a half hour, x-ray diffraction patterns have the peaks of magnetite- and hematite-phase. Lattice constants of magnetite-phase are 8.395 and 8.392 ${\AA}$ smaller than 8.396 and 8.398 ${\AA}$ before annealing, respectively. M$\ddot{o}$ssbauer spectra reveal the conventional magnetite pattern with the additional hematite pattern. Intensity ratios of B to A subspectra fur magnetite-phase become 1.9-2.0 over all temperature ranges and Cu ions are distributed over A and B sites randomly. Ratios of hematite to total intensity in M$\ddot{o}$ssbauer spectra for $\chi$= 0.1 and $\chi$= 0.2 are 10 and 21%, respectively. These hematite ratios may be due to annealing under vacuum at $450^circ{C}$, which transforms $Cu^{2+}$ ionic states into $Cu^{1+}$. Verwey temperatures far $\chi$= 0.1 and $\chi$= 0.2 are $123\pm2$ K and $128\pm2$ K.

A Study OH Mossbauer Spectra Of the $Li_{0.5}Fe_{2.5-x}Al_xO_4$ Ferrite System (Li_{0.5}Fe_{2.5-x}Al_xO_4 페라이트계의 Mossbauer 스펙트럼 연구)

  • 백승도
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.2
    • /
    • pp.58-62
    • /
    • 2001
  • The L $i_{0.5}$F $e_{2.5-x}$A $l_{x}$ $O_4$ systems (x=0, 0.3, 0.6, 0.9, 1.2, 1.5) were investigated by X-ray diffraction and Mossbauer spectroscopy. The structure of all the samples is cubic spinel type and lattice constant decrease with increasing Al content x. The Moissbauer spectra reveal two sextet for 0$\leq$x$\leq$0.6, two sextet and a doublet for 0.9$\leq$x$\leq$1.2, and a doublet for x=1.5. The cation distribution of the samples is (L $i_{1-a}$$^{+}$F $e_{a}$ $^{3+}$)$^{A}$[L $i_{a-0.5}$$^{+}$A $l_{2.5-a-x}$$^{+}$F $e_{2.5-a-x}$$^{3+}$]$^{B}$ $O_4$$^{2-}$ and substituted $Al^{3+}$ ions decrease the covalency of F $e^{3+}$- $O^{2-}$ bond in B-sites and A-B super-exchange interactions.tions.s.tions.ons.s.

  • PDF

Thermal Behavior of (Co0.5 Mn0.5)Fe2O4 for Hydrogen Generation by Thermochemical Cycle (열화학 사이클 H2 제조를 위한 (Co0.5 Mn0.5)Fe2O4의 열적 거동)

  • Shin, H.C.;Choi, S.C.;Kim, C.S.;Kim, J.W.;Joo, O.S.;Jung, K.D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.143-150
    • /
    • 2002
  • The thermal behavior of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ prepared by a co-precipitation wasinvestigated for Hz generation by the thermochemical cycle. The reduction reaction of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ started from $480^{\circ}C$, and the weight loss was 1.6 wt% up to $1100^{\circ}C$. At this reaction, $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ was reduced by release of oxygen bonded with the $Fe^{3+}$ ion in the B site of ($CO_{0.5}$ $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$. In the $H_2O$ decomposition reaction, $H_2$ was generated by oxidationof reduced $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$. The crystal structure of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ for reduction reaction maintained spinel structure and the lattice constant of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ ($8.41\AA$) was enlarged to $8.45\AA$. But the lattice constant of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ after $H_2O$ decomposition reaction did not change to $8.45\AA$. Then, $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ is excellent material in the thermochemical cyclic reaction due to release oxygen at low temperature for the reduction reaction and produce $H_2$ maintaining crystal structure for redox reaction.