• 제목/요약/키워드: Spindle Orientation

검색결과 9건 처리시간 0.028초

A New Approach Increasing the Rotational Accuracy of Ball- Bearing Spindle by Using Proper Bearing Positioning

  • Yegor. A.;Lee, Choon-Man;Chung, Won-Jee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권5호
    • /
    • pp.15-21
    • /
    • 2003
  • In order to improve the quality of a spindle unit it is important to increase its rotational accuracy. The rotational accuracy of a spindle unit can be defined as the stability or immobility of its spindle axis while rotating. Spindle rotation in the rolling bearings causes the disturbing influence, which leads to the oscillation of a rotation axis. The purpose of this study is to investigate the oscillation sources and find a way to decrease the runout without additional expenses. The main source of oscillation is the interaction between rolling bodies and ring races. The first oscillation source was the out-of-shape imperfection of inner bearing ring. The mutual compensation of oscillation by proper rings orientation was proposed, which sometimes allow to decrease the radial runout of spindle rotation axis by approximate 40% down. Also the outer ring harmonics were explored as the second oscillation source. The analysis shows the dependency between the number of rolling bodies and the outer ring race harmonics. The conclusion on the orientation of bearing cages and the bearing rings was made, which makes possible to obtain the optimal variant of their mounting in the spindle unit when the rotational accuracy of the spindle is maximal, and the spindle runout considerably less.

엔드밀 가공시 주축 오리엔테이션 기능을 통한 공구마멸 보정 장치의 개발 (Development of Calibrating Instrument for Tool Wear using Spindle Orientation Function in End Milling)

  • 김전하;강명창;김정석;김광호
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1095-1102
    • /
    • 2003
  • The most important thing in measuring the tool wear is to set up the measurement base. The end mill that is being used for machining of die is difficult to set up the base and to measure the tool wear because of geometric properties of that such as a helix and relief angle. In this study, a new instrument using spindle orientation function in end milling is developed to measure the tool wear and evaluated by the measuring system on the machine. Finally, this new method makes possible the wear measurement of same position and reduces the measuring time compared with the measuring methods such as the microscope and CCD.

엔드밀 가공시 주축 오리엔테이션 기능을 통한 공구마멸측정 보정 장치의 개발 (Development of Calibration Instrument far Tool Wear Measurement using Spindle Orientation Function in End Milling)

  • 강익수;김전하;강명창;김정석;김기태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.149-153
    • /
    • 2003
  • The most important thing in measuring the tool wear is to set up the measurement base. The end mill that is being used for machining is difficult to set up the base and to measure the tool wear because of geometric properties of that such as a helix and relief angle. In this study, a new instrument using spindle orientation function in end milling is developed to measure tool wear and evaluated by measuring system on the machine. Finally, this new method makes possible the wear measurement of same position and reduces measuring time compared with measuring methods such as the microscope and CCD.

  • PDF

Functional Analysis of the Putative BUB2 Homologues of C. elegans in the Spindle Position Checkpoint

  • Lee, Kyung-Hee;Song, Ki-Won
    • Animal cells and systems
    • /
    • 제9권2호
    • /
    • pp.87-94
    • /
    • 2005
  • Spindle position checkpoint monitors the orientation of mitotic spindle for proper segregation of replicated chromosomes into mother cell and the daughter, and prohibits mitotic exit when mitotic spindle is misaligned. BUB2 forms one of the key upstream element of spindle position checkpoint in budding yeast, but its functional homologues have not been identified in higher eukaryotes. Here, we analyzed the functions of two putative BUB2 homologues of C. elegans in the spindle orientation checkpoint. From the C. elegans genome database, we found that two open reading frames (ORFs), F35H12_2 and C33F10_2, showed high sequence homology with BUB2. We obtained the expressed sequence tag (EST) clones for F35H12_2 (yk221d4) and C33F10_2 (yk14e10) and verified the full cDNA for each ORF by sequencing and 5' RACE with SL1 primer. The functional complementation assays of yk221d4 and yk14e10 in ${\Delta}bub2$ of S. cerevisiae revealed that these putative BUB2 homologues of C. elegans could not replace the function of BUB2 in spindle position checkpoint and mitotic exit. Our attempt to document the component of spindle position checkpoint in metazoans using sequence homology was not successful. This suggests that structural information about its components might be required to identify functional homologues of the spindle position checkpoint in higher eukaryotes.

Determination of Cutting Orientation in Zigzag Milling Operationa: A Geometrical Approach;

  • Kim, Byeong Keuk;Park, Joon Young;Wee, Nam-Sook
    • 한국CDE학회논문집
    • /
    • 제2권3호
    • /
    • pp.186-194
    • /
    • 1997
  • This paper describes new methods to minimize the cutting time in zigzag milling operation of two dimensional polygonal surfaces. Previous works have been focused on mainly experimental approaches by considering some machining parameters such as, spindle speed, depth of cut, cutter traverse rate, cutter diameter, number of teeth, tool wear, life of tool, and so on. However, in this study, we considered two geometrical factors one by one in order to see the effect separately, which are the length of cut and the number of cutter traverse. In an N-sided concave or convex polygon, an algorithm has been developed which minimize the total length of cut. Also, a heuristic approach was used to minimize the number of cutter traverse.

  • PDF

NC데이타와 Off-Line Program을 이용한 연마 로봇 시스템 개발

  • 오영섭;유범상;양균의
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.692-697
    • /
    • 1997
  • This paper presents a method of grinding and polishing automation of precision die after CNC machining. The method employs a robot system equipped with a pneumatic spindle and a special abrasive film pad. The robote program is automatically generated off-line from a PC and downloaded to robot controller. Position and orientation data for the program is supplied from cutter contact (CC) data of NC machining process. This eliminates separate robot teaching process. This paper aims at practical automation of die finishing process which is very time consuming and suffering from shortage of workpeople. Time loss for changeover from one product to next is eliminated by off-line programming exploiting appropriate NC machining data. Dextrous 6-axis robot with rigid wrist and simple tooling enables the process applicable to larger, rather complex 3 dimensional free surfaces

  • PDF

수치제어 데이터와 오프라인 프로그램을 이용한 연마 로봇 시스템 개발 (The Development of Grinding Robot System Using NC data and Off-line Programming)

  • 오영섭;유범상
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.9-17
    • /
    • 1999
  • This paper presents a method of grinding and polishing automation of precision die after CNC machining. The method employs a robot system equipped with a pneumatic spindle and a special abrasive film pad. The robot program is automatically generated off-line program form a PC and downloaded to robot controller. Position and orientation data for the program is supplied form cutter contact (CC) data of NC machining process. This eliminates separate robot teaching process. This paper aims at practical automation of die finishing process which is very time consuming and suffering from shortage of workpeople. Time loss due to changeover from one product to another is eliminated by PC off-line programming exploiting appropriate NC machining data. Dextrous 6-axis robot with rigid wrist and simple tooling enables the process applicable to larger, rather complex 3 dimensional free surfaces.

  • PDF

3D 프린팅 복합소재의 가공에서 가공 조건 선정을 위한 머신러닝 개발에 관한 연구 (Development of Machine Learning Method for Selection of Machining Conditions in Machining of 3D Printed Composite Material)

  • 김민재;김동현;이춘만
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.137-143
    • /
    • 2022
  • Composite materials, being light-weight and of high mechanical strength, are increasingly used in various industries such as the aerospace, automobile, sporting-goods manufacturing, and ship-building industries. Recently, manufacturing of composite materials using 3D printers has increased. 3D-printed composite materials are made in free-form and adapted for end-use by adjusting the fiber content and orientation. However, research on the machining of 3D printed composite materials is limited. The aim of this study is to develop a machine learning method to select machining conditions for machining of 3D-printed composite materials. The composite material was composed of Onyx and carbon fibers and stacked sequentially. The experiments were performed using the following machining conditions: spindle speed, feed rate, depth of cut, and machining direction. Cutting forces of the different machining conditions were measured by milling the composite materials. PCA, a method of machine learning, was developed to select the machining conditions and will be used in subsequent experiments under various machining conditions.

TEM 정밀 시편 제작용 몰리브덴 합금 미세 고정 부품의 제작을 위한 절삭 가공 방법에 관한 연구 (A study on machining method about molybdenum alloy micro fixing part for TEM precision specimen.)

  • 김기범;이창우;이해진;함민지;김건희
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.19-24
    • /
    • 2017
  • In these days, increase requirement of TEM (Transmission Electro Microscope) in not only scientific field but also industrial field. Because TEM can measure inner-structure of specimen a variety of materials like metal, bio. etc. When use TEM, specimen should be thin about 50nm. So making for thin specimen, use Ion milling device that include specimen holder. The holder generally made of Aluminium Aluminium holder is worn away easily. For this reason, using time of ion milling with aluminum holder is too short. To solve the problem, we replace aluminium holer to molybdenum alloy holder. In this paper, we design molybdenum alloy holer for CAM and modify CAD modeling for effective machining process. So we array a specimen 3 by 4 and setup orientation for one-shot machining process. Next we make a CAM program for machining. we making a decision two machining strategy that chose condition of tool-path method, step-down, step-over. etc. And then conduct machining using CNC milling machining center. To make clear difference between case.1 and case.2, we fixed machining conditions like feed-rate, main spindle rpm, etc. After machining, we confirm the condition of workpiece and analysis the problems case by case. Finally, case.2 work piece that superior than case.1 cutting with WEDM because that method can not ant mechanical effect on workpiece.