• 제목/요약/키워드: Spindle Error Motion

검색결과 43건 처리시간 0.023초

주축 변위 센서를 이용한 절삭력 측정에 관한 연구 (A Study on Cutting Force Measurement Using a Cylindrical Capacitive Spindle Sensor)

  • 김일해;장동영;한동철
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.17-23
    • /
    • 2002
  • A cylindrical capacitance-type spindle displacement sensor was developed and its effectiveness as a system to monitor cutting forces during hard turning was tested in this research. The sensor was installed between the face of spindle cover and the chucking element and measured pure radial motion of the spindle under the condition with presence of roundness error at measured surface. To prove the effectiveness of the developed system hard aiming tests using ceramic inserts and tool steel as workpiece were conducted. The workpiece was hardened up to 65 Rc. The variations of pure radial motion of the spindle ware measured during the cutting tests. The signals from the sensor showed the same pattern of cutting force variations from the tool dynamometer due to the progress of tool wear. As the flank wear of the ceramic tool increased both static component of cutting forces and the amount of center shift of spindle orbit increased, Results from the research showed that the developed sensor could be utilized as an effective and cheap on-line sensing device to monitor cutting conditions and tool performance in the un-manned machining center.

자성보상형 공기정압 저널베어링의 회전운동정밀도 시뮬레이션을 위한 실험적 고찰 (Experimental Investigation for Rotational Error Motion Simulation of Inherently Compensated Aerostatic Journal Bearing)

  • 심종엽;황주호;박천홍
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.135-140
    • /
    • 2015
  • It is an important thing for a designer to simulate and predict the performance of a spindle and a rotary table. In addition to the general performance such as static stiffness, the error motion performance information is beneficial to the designer in many cases. However for an aerostatic bearing the fluid film physical status should be calculated in order to simulate those performances and the calculation time is another obstacle for a simple performance simulation. In this paper the investigation on experiment and simulation is performed in order to find a more effective simulation method for the rotational error motion.

성형연삭기의 주축부 구조해석과 최적설계에 관한 연구 (A Study on the Structure Analysis and Optimum Design of Surface Grinding Machine Spindle System)

  • 한정빈;황규원;정명진;박동삼
    • 한국기계연구소 소보
    • /
    • 통권16호
    • /
    • pp.83-94
    • /
    • 1986
  • Grinding machine, one of the precision machine tool, requires high accuracy in spindle system. But, recent Inspection and Test reports by KIMM shows high inferio¬rity ratio in home-made grinding machines and points out that this is mainly due to the lack of design ability and assembling technique of spindle system. In this paper, therefore, static stiffness, dynamic characteristics, thermal defor¬mation and error motion of spindle system were studied. With these results, we presented the general data to design and assemble the spindle system. Test of spindle system modified by this study showed that several factors affecting machining accuracy were improved largely.

  • PDF

운동오차 예측을 위한 공작기계 스핀들용 유도전동기의 발열량 해석 (Thermal Characteristic Analysis of Induction Motors for Machine Tool Spindle for Motion Error Prediction)

  • 성기현;조한욱;황주호;심종엽
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.141-147
    • /
    • 2015
  • This paper deals with thermal characteristic analysis of induction motors for machine tool spindle for motion error prediction. Firstly, the inverse design of general induction motors for machine tool spindle has been performed by design principles. Characteristics considering VVVF inverter of induction motors were analyzed. Secondary, power loss and thermal characteristics of induction motors analyzed by equivalent thermal resistance model from Motor-CAD S/W. To develop a second-order fitted power-loss distribution model for the constant-torque operating range of the induction motor, we employed the design of experiment and response surface methodology techniques. Finally, the analysis results were experimentally verified, and the validity of the proposed analysis method was confirmed.

PZT로 구동되는 회전 스테이지의 오차 운동 분석 (An Error Motion Analysis of Rotary Stage Driven By PZT)

  • 김진호;신동익;윤덕원;한창수;이상무;남경태
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.132-136
    • /
    • 2008
  • Axis of rotation error on rotary system are significant; such as the spindle radial error motion of a aligner, wire bonder and inspector machine which results in the poor state of manufactured goods. In this paper, the simple stage which consists of one PZT actuator and rotary encoder, is analyzed and measured by high resolution capacitance type displacement sensor. As the result of experiment, the paper discusses several issues that must be considered when designing rotary stage driven by PZT.

스핀들의 회전 정밀도에 따른 표면 거칠기 특성 연구 (A Study on Roughness Characteristic about Rotational Accuracy Variation)

  • 박기범;정원지;이춘만
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.110-115
    • /
    • 2009
  • In general, the radial error motion of a machine tool spindle system is effected on the accuracy of the parts to be made. This paper presents in milling process an investigation into spindle rotational accuracy effects on surface roughness of processing parts. We experimented the effects on spindle rotational accuracy in milling process by cutting AL 7075 workpiece at various rotational speed. In order to analyze the effects of rotational accuracy on surface roughness, we proposed the method using iSIGHT's RBF Approximation. The proposed method can be used fur anticipating the surface roughness when some spindle rotational accuracy experiments could be done in milling process.

600 mm 급 다기능 광폭 센터리스 연삭시스템 개발 (Development of Multi-functional Centerless Grinding System with 600 mm Wide Grinding Wheels)

  • 오정수;조창래;쯔끼시마 히데히로;조순주;박천홍;오정석;황인범;이원재;김석일
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1129-1137
    • /
    • 2013
  • We report a centerless grinding machine which can perform multi-function with 600 mm wide grinding wheels. By increasing manufacturing area, long workpiece such as camshaft and steering shaft, is allowed to grind more quickly, compared with cylindrical grinding system. In this paper, the design of centerless grinding machine puts emphasis on symmetry to exploit the thermal stability. Results of finite element analysis shows that the difference of the structural deflection in the front and rear guideways is less than $1.5{\mu}m$ due to symmetric design. The difference is less than $3.0{\mu}m$, even though the thermal deformation is considered. According to the performance evaluation, the radial error motion of the G/W spindle, which is measured by applying Donaldson Ball Reversal, is about 1.1${\mu}m$. The yaw error of the G/W slide is improved from 2.1 arcsec to 0.5 arcsec by readjusting the slide preload and ball screw.

초정밀 가공기의 실시간 운동오차 및 열변형오차 보상 (Real-time Motion Error Time and the Thermal Error Compensation of Ultra Precision Lathe)

  • 곽이구;김홍건;김재열
    • 한국공작기계학회논문집
    • /
    • 제15권4호
    • /
    • pp.44-48
    • /
    • 2006
  • Recently, demand the ultra precision product which is increasing rapidly is used extensively frontier industry field such as semi-conductor, computer, aerospace, precision machine. Ultra precision processing is the portion that is very needed to NT in the field of mechanical engineering. The latest date, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts those are connected with these industrial fields. Specially, require motion accuracy of high resolution of nm order in stroke of hundreds millimeters according as diameter of processing object great and processing accuracy rises. In this case ,the response speed absolute delay because inertial mass of moving part is very large. Therefore, real time motion error compensation becomes very hardly. In this paper, we used ultra precision cutting unit(UPCU) to cope such problem. a UPCU is designed and tested to obtain sub-micrometer from accuracy in diamond turning of flat surfaces. The thermal growth spindle error is compensated for real time using a UPCU driven by piezoelectric actuator along with a laser encoder displacement sensor.

동력전달요소에 따른 유정압 주축의 회전정밀도에 관한 연구 (Effects of the Power Transmission Units on the Rotational Accuracy of A Hydrostatic Spindle)

  • Park, C.H.;Ryu, G.W.;Jung, Y.G.
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.59-68
    • /
    • 1995
  • In this study, the effects of the power transmission units on the rotational accuracy are investigated experimentally in a hydrostatic spindle. The effects of warm up time, unbalancing and the position of measuring sensor are pre-examined for the determination of measuring conditions. The misalignment of the power transmission units and the vibration excited by the fluctuation of belt are considered as the dominant parameters of error motion. The variation and scatter of run out at the range of 0 to 3,000rpm in rotational speed are appropriated for the camparison of availabilities of the transmission units to precision spin- dles.

  • PDF