• Title/Summary/Keyword: Spinal neurons

Search Result 212, Processing Time 0.032 seconds

Spinal and Peripheral GABA-A and B Receptor Agonists for the Alleviation of Mechanical Hypersensitivity following Compressive Nerve Injury in the Rat (백서에서 신경압박 손상에 의해 유발된 과민반응에서 척추 및 말초 GABA-A와 B 수용체 작용제에 의한 완화효과)

  • Jeon, Young Hoon;Yoon, Duck Mi;Nam, Taick Sang;Leem, Joong Woo;Paik, Gwang Se
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.22-32
    • /
    • 2006
  • Background: This study was conducted to investigate the roles of the spinal and peripheral ${\gamma}$-aminobutyric acid (GABA)- ergic systems for the mechanical hypersensitivity produced by chronic compression of the dorsal root ganglion (CCD). Methods: CCD was performed at the left 5th lumbar dorsal root ganglion. The paw withdrawal threshold (PWT) to von Frey stimuli was measured. The mechanical responsiveness of the lumbar dorsal horn neurons was examined. GABAergic drugs were delivered with intrathecal (i.t.) or intraplantar (i.pl.) injection or by topical application onto the spinal cord. Results: CCD produced mechanical hypersensitivity, which was evidenced by the decrease of the PWT, and it lasting for 10 weeks. For the rats showing mechanical hypersensitivity, the mechanical responsiveness of the lumbar dorsal horn neurons was enhanced. A similar increase was observed with the normal lumbar dorsal horn neurons when the GABA-A receptor antagonist bicuculline was topically applied. An i.t. injection of GABA-A or GABA-B receptor agonist, muscimol or baclofen, alleviated the CCD-induced hypersensitivity. Topical application of same drugs attenuated the CCD-induced enhanced mechanical responsiveness of the lumbar dorsal horn neurons. CCD-induced hypersensitivity was also improved by low-dose muscimol applied (i.pl.) into the affected hind paw, whereas no effects could be observed with high-dose muscimol or baclofen. Conclusions: The results suggest that the neuropathic pain associated with compression of the dorsal root ganglion is caused by hyperexcitability of the dorsal horn neurons due to a loss of spinal GABAergic inhibition. Peripheral application of low-dose GABA-A receptor agonist can be useful to treat this pain.

Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury

  • Wang, Kun;Kong, Xiangang
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.495-500
    • /
    • 2016
  • This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related $K^+$ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1.

Neuroanatomical Comparative Studies on the Motor and Sensory Neurons Associated with Daereung(PC7) in the Rats (흰쥐에서 대릉(PC7)과 관련된 운동신경과 감각신경의 분포영역에 대한 신경해부학적 연구)

  • Lee, Sun-Ho;Lee, Chang-Hyun;Lee, Sang-Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.5
    • /
    • pp.416-421
    • /
    • 2015
  • This study was performed to comparative investigate the distribution of primary sensory and motor neurons associated with Daereung(PC7) acupoints by using neural tracing technique. A total 16 SD rats were used in the present study. After anesthesia, the rats received microinjection of 6 ㎕ of cholera toxin B subunit(CTB) into the corresponding sites of the acupoints Daereung(PC7), in the human body for observing the distribution of the related primary sensory neurons in dorsal root ganglia(DRGs) and motor neurons in the spinal cord(C3∼T4) and sympathetic ganglia. Three days after the microinjection, the rats were anesthetized and transcardially perfused saline and 4% paraformaldehyde, followed by routine section of the DRGs, sympathetic chain ganglia(SCGs) and spinal cord. Labeled neurons and nerve fibers were detected by immunohistochemical method and observed by light microscope equipped with a digital camera. The labeled neurons were recorded and counted. From this research, the distribution of primary sensory and motor neurons associated with Daereung(PC7) acupoints were concluded as follows. Muscle meridian related Daereung(PC7) controlled by spinal segments of C5∼T1, C6∼T4, respectively.

Effect of Epimedium Koreanum Nakai on GO-Induced Neurotoxicity in Cultured Mouse Spinal Dorsal Root Ganglion Neurons (Glucose Oxidase에 의(依)하여 손상(損傷)된 배양척수감각신경절세포(培養脊髓感覺神經節細胞)에 대(對)한 음양곽(淫羊藿)의 효과(效果))

  • Park Seung-Taeck;Lee Ho-Sub;Yun Yong-Gap;Park Byung-Rim
    • Herbal Formula Science
    • /
    • v.7 no.1
    • /
    • pp.143-151
    • /
    • 1999
  • To evaluate the neurotoxic effect of oxygen radicals in cultured mouse spinal dorsal root ganglion(DRG) neurons, cytotoxicity was determined by MTT assay after cultured DRG neurons were grown in the media containing various concentrations of glucose oxidase(GO). In addition, neuroprotective effect of herb extract, Epimedium Koreanum Nakai was examined by MTT assay in cultured DRG neurons. Cell viability of cultured DRG neurons was remarkably decreased by GO in dose- and time-dependent manner, and Epimedium Koreanum Nakai protected remarkably GO-induced neurotoxicity in these cultures. From the above results, it is suggested that oxygen radicals is toxic in cultured mouse DRG neurons, and herb extracts such as Epimedium Koreanum Nakai are effective in prevention of the neurotoxicity induced by oxygen radicals in cultured mouse DRG neurons.

  • PDF

Effect of Rhizoma Gastrodiae on Cultured Spinal Motor Neurons Damaged by Oxygen Radicals (천마가 산소자유기로 손상된 생쥐의 배양 척수 운동신경세포에 미치는 영향)

  • Son IL Hong;Lee Jung Hun;kim Sang Su;Lee Kang Chang;Lee Young Mi;Hong Gi Youn;Moon Hyung Bae;Seo Eun A;Han Du Seok;Shin Min Kyo;Song Ho Joan;Park Seung Taeck
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.262-266
    • /
    • 2002
  • In order to elucidate the mechanism of cytotoxic effect of oxygen radicals on cultured mouse spinal motor neurons, the neurotoxicity induced by hydrogen peroxide(H₂O₂) was evaluated by MTT assay. The neuroprotective effect of Rhizoma Gastrodiae(RG) against H₂O₂-mediated neurotoxicity was also examined in these cultures by SRB assay. The results were as follows : The value of lethal concentration 50(LC50) of H₂O₂ was estimated at a concentration of 30 uM in these cultures. Cell viability of cultured mouse spinal motor neurons was remarkably decreased by H₂O₂-induced neurotoxicity in a dose- and time-dependent manner. RG was remarkably effective in blocking the neurotoxicity induced by H₂O₂ at a concentration of 120 μM as determined by SRB assay. From above the results, it is suggested that H₂O₂ induce neurotoxicity, and the selective herbal extracted RG was very effective in blocking H₂O₂-mediated neurotoxicity on cultured mouse spinal motor neurons.

Morphine-induced Modulation of Nociceptive Spinal Dorsal Horn Neuronal Activities after Formalin-induced Inflammatory Pain

  • Park, Joo-Min;Li, Kang-Wu;Jung, Sung-Jin;Kim, Jun;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.77-86
    • /
    • 2005
  • In this study, we examined the morphine-induced modulation of the nociceptive spinal dorsal horn neuronal activities before and after formalin-induced inflammatory pain. Intradermal injection of formalin induced time-dependent changes in the spontaneous activity of nociceptive dorsal horn neurons. In naive cats before the injection of formalin, iontophoretically applied morphine attenuated the naturally and electrically evoked neuronal responses of dorsal horn neurons. However, neuronal responses after the formalin-induced inflammation were significantly increased by morphine. Bicuculline, $GABA_A$ antagonist, increased the naturally and electrically evoked neuronal responses of dorsal horn neurons. This increase in neuronal responses due to bicuculline after the formalin-induced inflammation was larger than that in the naive state, suggesting that basal $GABA_A$ tone increased after the formalin injection. Muscimol, $GABA_A$ agonist, reduced the neuronal responses before the treatment with formalin, but not after formalin treatment, again indicating an increase in the GABAergic basal tone after the formalin injection which saturated the neuronal responses to GABA agonist. Morphine-induced increase in the spinal nociceptive responses after formalin treatment was inhibited by co-application of muscimol. These data suggest that formalin-induced inflammation increases $GABA_A$ basal tone and the inhibition of this augmented $GABA_A$ basal tone by morphine results in a paradoxical morphineinduced increase in the spinal nociceptive neuronal responses after the formalin-induced inflammation.

The Effect of Electroacupuncture on NeuN Expression in Spinal Cord in Sciatic Nerve Injured Rat (흰쥐 궁둥신경 손상 후 전침에 의한 척수 내 NeuN 발현에 미치는 영향)

  • Cho, Mi-Suk
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.45-52
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effect of electroacupuncture on NeuN expression in ventral horn motor neurons of spinal cord, changes in pain thresholdchanges in motor function in rats with partially dissected sciatic nerves. Method: A total of 120 male Sprague-Dawley rats were randomly divided into two groups, a control group and a group administered electroacupuncture at ST36, LI11 and SP9 with 120 Hz and 0.5 mA. Animals were sacrificed on days 1, 3, 7, 14 and 28 after nerve injury (the sciatic nerve was partially dissected). The pain threshold was recorded by an Analgesia? meter and a BBB? score was calculated for motor function. After preparing lumbar spinal cord slide sections, they were immunostained with NeuN antisera (1:2,500). Results: The numbers of NeuN immunoreactive neuronsin the electroacupuncture group was increased compared to the control group. The numbers of NeuN immunoreactive neurons on days 14 and 28 day were different (p<0.05), as were the numbers on days 3 and 7 (p<0.01). The pain threshold BBB score for the electroacupuncture group was higher than for controls. Conclusion: The increase in pain threshold, BBB-score and number of NeuN immunoreactive neurons inventral horn motor neurons of spinal cord in rats withnerve dissection showed that electroacupuncture can attenuate pain transduction and increase motor function. Also, NeuN was a good marker for identifying the degree of nerve cell loss after nervous system injury.

Effect of Capsaicin on the Formalin-induced Fos-like Immunoreactivity in the Spinal Cord of Rat (Formalin에 의해 흰쥐의 척수에서 유도된 Fos-like Immunoreactivity에 미치는 Capsaicin의 영향)

  • 곽지연;오우택
    • YAKHAK HOEJI
    • /
    • v.43 no.3
    • /
    • pp.404-410
    • /
    • 1999
  • Administration of capsaicin produces acute pain and subsequent long-lasting antinociception. The antinociceptive action site of capsaicin is primarily small afferent nerve fibers. However, the effect of capsaicin on the neural activity of dorsal horn neurons are not well understood. The goal of the present experiment was to study the action of capsaicin on activity of dorsal horn neurons using c-fos immunoreactivity in the spinal cord. Intradermal injection of formalin in the hindpaw produced inflammation in the foot pad and increased the number of cells exhibiting Fos-like immunoreactivity (FLI) in the dorsal horn of the spinal cord, suggesting the hyperalgesia because of the apparent inflammation. Intradermal injection of capsaicin prior to formalin injection significantly reduced the number of cells exhibiting FLI induced by formalin and increased the paw-withdrawal latency, suggesting the hypoalgesic effect of capsaicin. Coadministeration with capsaicin of capsazepine and ruthenium red, antagonists of capsaicin receptor reversed the reduction of formalin-induced FLI by capsaicin. he antagonists also partially antagonized the antinociceptive effect of capsaicin in the paw-withdrawal test. These results further suggest that capsaicin reduces prsponses of dorsal horn neurons to the inflammatory nociceptive stimuli in the periphery. Thus, the reduction of FLI subserves the neural mechanisms underlying analgesia produced by capsaicin.

  • PDF

Effects of Hydrogen Peroxide on Neuronal Excitability and Synaptic Transmission in Rat Substantia Gelatinosa Neurons

  • Son, Yong;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.32 no.4
    • /
    • pp.153-160
    • /
    • 2007
  • The superficial dorsal horn, particularly substantia gelatinosa (SG) in the spinal cord, receives inputs from small-diameter primary afferents that predominantly convey noxious sensation. Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS are also involved in persistent pain through a spinal mechanism. In the present study, whole cell patch clamp recordings were carried out on SG neurons in spinal cord slice of young rats to investigate the effects of hydrogen peroxide on neuronal excitability and excitatory synaptic transmission. In current clamp condition, tert-buthyl hydroperoxide (t-BuOOH), an ROS donor, depolarized membrane potential of SG neurons and increased the neuronal firing frequencies evoked by depolarizing current pulses. When slices were pretreated with phenyl-N-tert-buthylnitrone (PBN) or ascorbate, ROS scavengers, t-BuOOH did not induce hyperexcitability. In voltage clamp condition, t-BuOOH increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), and monosynaptically evoked excitatory postsynaptic currents (eEPSCs) by electrical stimulation of the ipsilateral dorsal root. These data suggest that ROS generated by peripheral nerve injury can modulate the excitability of the SG neurons via pre- and postsynaptic actions.

Comparative Study on the Toxic Mechanism of Oxidant-Induced Neurotoxicity and Protective Effects of Several Herb Extracts as a Nerve Growth Factor in Spinal Motor Neurons Damaged by Oxygen Radicals (신경성장인자(神經成長因子)로서의 약류별(藥類別) 한약제(韓藥劑)가 척수(脊髓) 운동신경세포(運動神經細胞)의 손상(損傷)에 미치는 효능(效能) 및 기전(機轉)에 관(關)한 비교(比較) 연구(硏究))

  • Park Seung-Taeck;Yoon Hyang-Suk;Hyoung Keon-Young;Cho Chung-Gu;Lee Kang-Chang;Kim Won-Shin;Kim Hyung-Min;Jeon Byung-Hoon;Yun Young-Gap
    • Herbal Formula Science
    • /
    • v.7 no.1
    • /
    • pp.131-141
    • /
    • 1999
  • In order to eludidate the mechanism of oxidative stress in cultured spinal motor neurons damaged by oxygen free radicals, cytoxicity was assesed by MTT assay and NR assay after spinal motor neurons from mouse were cultured in media containing various concentrations of xanthine oxidase(XO) and hypoxanthine(HX) for 3 hours. In addition, neuroprotective effects of several herb extracts on oxidant-induced neurotoxicity were examined in these cultures, compared with nerve growth factors such as basic fibroblast growth factor(bFGF). XO/HX decreased cell viability in dose- and time dependent manners on cultured mouse spinal motor neurons, and MTT50 and NR50 values were measured at 20mU/ml XO and 0.1mM HX for 3 hours in these cultures. bFGF significantlt increased cell viability. In neuroprotective of herb extracts, Epimedium Koreanum Nakai(EK) and Alpinia oxphylla Mig(IJI) was very effective in the prevention of the neurotoxicity induced by XO/HX in cultured mouse spinal motor neurons. From the above results, it is suggested that XO/HX shows toxic effect in cultured mouse spinal motor neurons and selective herb extracts such as Epimedium Koreanum Nakai(EK) and Alpinia oxphylla Mig(IJI) were very effective in the increase of cell viability against the neurotoxicity induced by oxygen radicals in these cultures.

  • PDF