• Title/Summary/Keyword: Spinacia oleracea L.

Search Result 40, Processing Time 0.028 seconds

Inhibitory Effect of Fermented Spanish Extract on Inorganic phosphate-induced Vascular Calcification in ex vivo Aortic Rings (발효 시금치 추출물의 무기인산염에 의해 유도된 혈관 석회화 저해 효과)

  • Lee, Sang Hee;Hong, Sun Mi;Sung, Mi Jeong
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.3
    • /
    • pp.248-255
    • /
    • 2022
  • Spinach (Spinacia oleracea L.), a green leafy vegetable, is well known as a functional food due to its biological activities. Vascular calcification is associated with several disease conditions including atherosclerosis, diabetes, and chronic kidney disease (CKD), and is known to raise the risk of cardiovascular diseases related morbidity and mortality. However, there are no previous studies that have investigated the effects of fermented spinach exract (FSE) against aortic and its underlying mechanisms. Therefore, this study investigated the effects and action of possible mechanisms of FSE on inorganic phosphate (PI)-induced vascular calcification in ex vivo mouse aortic rings. PI increased vascular calcification through calcium deposition in ex vivo aortic rings. FSE inhibited calcium accumulation and osteogenic key marker, runt-related transcription factor 2 (Runx2), and bone Morphogenetic Protein 2 (BMP-2) protein expression in ex vivo aortic rings. And, FSE inhibited PI-induced extracellular signal-regulated kinase (ERK) and p38 phosphorylation in ex vivo aortic rings. These results show that FSE can prevent vascular calcification which may be a crucial way for the prevention and treatment of vascular disease association with vascular calcification.

Method Validation and Quantification of Lutein and Zeaxanthin from Green Leafy Vegetables using the UPLC System (UPLC를 이용한 lutein과 zeaxanthin의 분석법 검증 및 엽채류에서의 정량적 평가)

  • Kim, Suna;Kim, Ji-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.686-691
    • /
    • 2012
  • The objective of this research is to present method development and validation for the simultaneous determination of lutein and zeaxanthin using ultra performance liquid chromatography (UPLC). Also, rapid quantification was performed on six green leafy vegetables (Allium tuberosum, Aster scaber, Hemerocallis fulva, Pimpinella brachycarpa, Sedum sarmentosum and Spinacia oleracea) that are commonly consumed in Korea. Separation and quantification were successfully achieved with a Waters Acquity BEH C18 ($50{\times}2.1mm$, $1.7{\mu}m$) column by 85% methanol within 5 min. Two compounds showed good linearity ($r^2$ > 0.9968) in $1-150{\mu}g/mL$. Limit of detection (LOD) and quantification (LOQ) for lutein and zeaxanthin were 1.7 and 5.1 g/mL and 2.1 and 6.3 g/mL, respectively. The RSD for intra- and inter-day precision of each compound was less than 10.69%. The recovery of each compound was in the range of 91.75-105.13%. Aster scaber and Spinacia oleracea contained significantly higher amounts of lutein ($4.06{\pm}0.24$ and $3.97{\pm}0.10mg$/100 g of fresh weight), respectively.

Growth and Mineral Contents of Spinach (Spinacia oleracea L.) and Radish (Raphanus sativus L.) as Related with a Low Dose Gamma Irradiation

  • Hwangbo, Jun-Kwon;Kim, Jae-Sung;Lim, Ji-Hyeok;Baek, Myung-Hwa;Chung, Byung-Yeoup;Kim, Jin-Hong
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.400-404
    • /
    • 2003
  • This study was to evaluate the effects of gamma irradiation on the germination, nutrient concentrations and growth of spinach and radish. Both the spinach and radish seeds exhibited relatively higher germination rates in response to the low doses of gamma irradiation compared to the non -irradiated control. Leaf DW of the radish did not respond to gamma irradiation but that of the spinach increased significantly in response to a gamma radiation of 4 Gy (P< 0.05). Leaf growth parameters of the spinach including the leaf area and SLA (leaf area/leaf dry weight) also demonstrated increased responses to gamma irradiation. R/S (root dry weight/shoot dry weight), root DW and root length of the spinach exhibited a positive response to gamma irradiation while those of the radish did not. In contrast, SRL (root length/root dry weight) significantly decreased with gamma irradiation at 8 Gy for the spinach, but not for the radish. The tissue nitrogen concentrations of the spinach showed an increased response to gamma irradiation while that of the radish did not. Furthermore, higher concentrations of phosphorus, potassium, calcium and magnesium were found in the irradiated spinach, but not in the irradiated radish. It seems that the non-specific physiological and/or biochemical activities of spinach might be accelerated by gamma irradiation, possibly accounting for the stimulation of nutrient uptake from the root media and early biomass accumulation in the current study.

Influence of low dose ${\gamma}$ radiation on the physiology of germinative seed of vegetable crops (저선량 감마선이 채소 발아종자의 생리활성에 미치는 영향)

  • Kim, Jae-Sung;Lee, Eun-Kyung;Back, Myung-Hwa;Kim, Dong-Hee;Lee, Young-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.1
    • /
    • pp.58-61
    • /
    • 2000
  • This study was conducted to determine the effect of low dose ${\gamma}-ray$ on the germination rate and physiology of germinative seeds of welsh onion ( Allicm fistulosum L. cv. Sukchangwoidae ) and spinach ( Spinacia oleracea L. cv. Chungrok ). The germination rate of irradiation group was much higher than that of the control. Especially it was noticeably higher in 1 or 2 Gy irradiation groups in the sowing spinach seeds on paper towel. On the welsh onion, the germination rate of the 1 Gy irradiation group increased by 17% compared to that of the control. Ion leakage from seeds irradiated with low dose of ${\gamma}-ray$ was decreased compared to that from the control especially at the early stage of incubation when examined by means of electric conductance. This tendency was confirmed in seeds of welsh onion and spinach. Starch hydrolysis was stimulated by ${\gamma}-ray$ irradiation in welsh onion. Furthermore ${\gamma}-ray$ irradiation was beneficial to keeping the vitality of seeds as determined through decarboxylation of glutamic acid.

  • PDF

A Study on the Utilization of Urban Garden Design Derived from the Traditional Farming Method Gyeonjongbeop from the Joseon Period: Focused on Imwongyeongjeji Bolliji

  • Hong, In-Kyoung;Yun, Hyung-Kwon;Chae, Young;Lee, Sang-Mi;Jung, Young-Bin;Lee, Mi-Ra
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • Background and objective: Traditional farming is winning recognition as a sustainable alternative farming method. As urban farming increases in South Korea, it is crucial to develop more sustainable farming techniques. Gyeonjongbeop is the traditional farming method introduced in the Joseon period. This study was conducted to propose a productive garden model suitable for urban farming through the interpretation of traditional farming methods contained in Imwongyeongjeji Bolliji and to test the model on an actual field. Methods: Using the design and cropping system of Gyeonjongbeop as the research materials, we reviewed its tillage and cultivation and examined the applicability. We proposed a modified method by extracting parts applicable to urban farming. According to the methods, we created a garden with ridges and furrows, cultivated proper vegetables, and evaluated their growth. Results: Raphanus sativus, Allium fistulosum L., Brassica juncea, and Spinacia oleracea grown on ridges showed higher growth than those grown on a conventional flat field. The growth of Hordeum vulgare var. hexastichon and Triticum aestivum L. on furrows was also slightly higher. This proved that the method could make up for the deficiencies of barley and wheat that are weak against winds and cold and are easily destroyed by the spring rains. Conclusion: Ridge and furrow cultivation derived from Gyeonjongbeop can be an efficient urban farming system compared to the conventional cultivation in flat fields. The system can use fallow lands in winter for year-round urban farming. In addition, the application of the traditional farming system can enhance the humanistic value of urban farming.

Effect of Polypropylene Film Package and Storage Temperature on the Shelf-life Extension of Spinach (Spinacia oleracea L.) (시금치 포장 및 보관온도가 품질보존에 미치는 영향)

  • Choi, Dong-Jin;Lee, Suk-Hee;Yoon, Jae-Tak;Sim, Yong-Gu;Oh, Seok-Gui;Jun, Ha-Joon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.247-251
    • /
    • 2007
  • To extend the shelf-life of spinach after harvest, we investigated the effect of various packaging methods and storage temperature. In case of polypropylene film package, there was no weight loss, but in non-package, remarkably weight loss occurred as storage period extended and storage temperature risen. Content of vitamin C was decreased rapidly at early stage of storage, and decrease of vitamin C in low temperature storage was lower than that of room temperature storage, but its large difference according to packaging method was not observed. In hunter's value on spinach, b value in room temperature storage was higher than that of low temperature storage. In terms of freshness, shelf-life of spinach by low temperature storage $(1{\sim}3^{\circ}C)$ after PP film packaging lasted 34 days, and that by room temperature storage $(10{\sim}15^{\circ}C)$ after PP film packaging lasted 8 days, but that by room temperature storage after non-packaging lasted 3 days.

Temperature determines post-harvest quality of spinach leaves after gamma irradiation

  • Kim, Jin-Hong;Kim, Ji Hong;Lee, Min Hee;Kim, Jin Kyu;Chung, Byung Yeoup
    • Rapid Communication in Photoscience
    • /
    • v.3 no.1
    • /
    • pp.25-27
    • /
    • 2014
  • The relative importance of radiation dose, storage time, and temperature in radiation processing of spinach (Spinacia oleracea L.), was evaluated in terms of the postharvest quality through a model study using leaf disks. Physiological activity and chlorophyll and carotenoid contents were measured to represent the postharvest quality (in terms of external appearance) of spinach, a leafy green vegetable. At $22^{\circ}C$ and $30^{\circ}C$, the higher gamma-radiation dose caused a greater decrease in the physiological activity, depending on the storage time of 4 d. However, this decrease was not significant at $4^{\circ}C$ and $15^{\circ}C$. Total chlorophyll and carotenoid contents were substantially decreased by 3 kGy at $15^{\circ}C$, and dose-dependently by 0.5-3 kGy at $22^{\circ}C$. In contrast, the proportion of lutein in total carotenoid was significantly increased in the 2-3-kGy samples only at $22^{\circ}C$, while that of ${\beta}$-carotene was slightly decreased, indicating progression of leaf aging. These data suggest that the unfavorable effect of gamma irradiation on the postharvest quality of spinach could be avoided or controlled by the storage time or temperature rather than the radiation dose. The current study could be available to improve radiation processing of other leafy green vegetables.

Damages by Tyrophagus similis (Acari: Acaridae) in Greenhouse Spinach in Korea (곤봉가루응애(Tyrophagus similis)에 의한 시설재배 시금치 피해)

  • Jung, Jae-A;Cho, Myoung-Rae;Kim, Hyeong-Hwan;Kang, Taek-Jun;Lee, Jong-Ho;Do, Kyeong-Ran
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.429-432
    • /
    • 2010
  • A mite damage was observed in spinach (Spinacia oleracea L.) under organic culture greenhouses. The mite was identified as Tyrophagus similis Volgin, 1949. It was very difficult for the farmers to diagnose the mite damage because of its tiny size about 0.5 nm in length. And the symptom was not clear at the early growth stage of the spinach because the mite mainly attack the very young leaves. In this study, we first report the spinach damages by T. similis in Korea. Informations on the mite morphology and the spinach damage symptoms are provided for the diagnosis.

Antioxidant Effects of Spinach (Spinacia oleracea L.) Supplementation in Hyperlipidemic Rats

  • Ko, Sang-Heui;Park, Jae-Hee;Kim, So-Yun;Lee, Seon Woo;Chun, Soon-Sil;Park, Eunju
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2014
  • Increased consumption of fresh vegetables that are high in polyphenols has been associated with a reduced risk of oxidative stress-induced disease. The present study aimed to evaluate the antioxidant effects of spinach in vitro and in vivo in hyperlipidemic rats. For measurement of in vitro antioxidant activity, spinach was subjected to hot water extraction (WE) or ethanol extraction (EE) and examined for total polyphenol content (TPC), oxygen radical absorbance capacity (ORAC), cellular antioxidant activity (CAA), and antigenotoxic activity. The in vivo antioxidant activity of spinach was assessed using blood and liver lipid profiles and antioxidant status in rats fed a high fat-cholesterol diet (HFCD) for 6 weeks. The TPC of WE and EE were shown as $1.5{\pm}0.0$ and $0.5{\pm}0.0mg$ GAE/g, respectively. Increasing the concentration of the extracts resulted in increased ORAC value, CAA, and antigenotoxic activity for all extracts tested. HFCD-fed rats displayed hyperlipidemia and increased oxidative stress, as indicated by a significant rise in blood and liver lipid profiles, an increase in plasma conjugated diene concentration, an increase in liver thiobarbituric acid reactive substances (TBARS) level, and a significant decrease in manganese superoxide dismutase (Mn-SOD) activity compared with rats fed normal diet. However, administration of 5% spinach showed a beneficial effect in HFCD rats, as indicated by decreased liver TBARS level and DNA damage in leukocyte and increased plasma conjugated dienes and Mn-SOD activity. Thus, the antioxidant activity of spinach may be an effective way to ameliorate high fat and cholesterol diet-induced oxidative stress.

Effects of Potassium-Cyanoethylstarch (K-CES) and Polyacrylamide (PAM) on Growth of Spinach (Spinacia oleracea L.) (토양내 K-CES와 PAM처리가 시금치의 생육에 미치는 영향)

  • Kim, Seog-Kyun;Kawabata, Saneyuki;Sakiyama, Ryozo
    • Horticultural Science & Technology
    • /
    • v.16 no.2
    • /
    • pp.226-228
    • /
    • 1998
  • The objective of this study was to observe the effects of potassium-cyanoethylstarch (K-CES), which is a natural polymer derivate,. and polyacrylamide (PAM), which is a synthetic polymer, on the growth of spinach under environment-controlled biotron. K-CES was made from tapioca starch, and introductions of acrylonitrile was confirmed by FT-IR. Water absorbing capacities (WAC) of K-CES and PAM were 37.6 and 47.8 times, respectively. WAC of PAM was slightly higher than K-CES, WAC of PAM m saline solutions were more reduced than those of K-CES. It was introduced that K-CES treatment was more effective than PAM in higher salinity of water and soil. Dry super absorptive polymers were put into solution, and the solution was applied to soil as an soil conditioner. Both amendments, K-CES and PAM, increased the vegetative growth of the spinach when applied at 0.1% of soil weight. In general, the most favorable results for early vegetative growth of the spinach came from the PAM treatment, followed by the K-CES treatment.

  • PDF