• Title/Summary/Keyword: Spin-up

Search Result 268, Processing Time 0.025 seconds

Flow Characteristics in Spin-Up of a Three-Layer Fluid

  • Sviridov Evgeny;Hyun Jae Min
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.271-277
    • /
    • 2006
  • A numerical study is made of the spin-up from rest of a three-layer fluid in a closed, vertically-mounted cylinder. The densities in the upper layer $\rho_1$, middle layer $\rho_2$ and lower layer $\rho_3\;are\;\rho_3\;>\;\rho_2\;>\;\rho_1$, and the kinematic viscosities are left arbitrary. The representative system Ekman number is small. Numerical solutions are obtained to the time-dependent axisymmetric Navier-Stokes equations, and the treatment of the interfaces is modeled by use of the Height of Liquid method. Complete three-component velocity fields, together with the evolution of the interface deformations, are depicted. At small times, when the kinematic viscosity in the upper layer is smaller than in the middle layer, the top interface rises (sinks) in the central axis (peripheral) region. When the kinematic viscosity in the lower layer is smaller than in the middle layer, the bottom interface rises (sinks) in the periphery (axis) region. Detailed shapes of interfaces are illustrated for several cases of exemplary viscosity ratios.

Period changes in the Intermediate Polar MU Camelopardalis

  • Park, Jiwon;Yoon, Jho-Na;Kim, Yonggi;Andronov, I.L.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.89.1-89.1
    • /
    • 2015
  • Period changes found in the 10 years CCD BVR photometry data (2005 - 2014) of the Intermediate Polar MU Cam will be discussed. The timings of extrema of the data are determined and the new ephemeris for the spin period and orbital period have been calculated by using multi-periodic approximation as follows: BJD(orb)=2454085.46(19)+0.19664 $10(26){\cdot}E$ and BJD(spin)=2454085.50725(91)+0.013740942(13) ${\cdot}$ $E-1.51(10){\times}10^{-12}{\cdot}E^2$. The O-C diagram shows an increasing of the spin period as $P=-2.20(14){\cdot}10^{-12}s/s$. It is also found in MU Cam that the white dwarf's rotation seems to be switched from a state of spin-down to spin-up by the white dwarf's equilibrium spin period in 2005.

  • PDF

Interface Engineering in Quasi-Magnetic Tunnel Junctions with an Organic Barrier

  • Choi, Deung-Jang;Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.185-189
    • /
    • 2010
  • Spin polarized tunneling through a hybrid tunnel barrier of a Spin filter (SF) based on a EuO ferro-magnetic semiconductor and an organic semiconductor (OSC) (rubrene in this case) was investigated. For quasi-magnetic tunnel junction (MTJ) structures, such as Co/rubrene/EuO/Al, we observed a strong spin filtering effect of the EuO layer exhibiting I-V curves with high spin polarization (P) of up to 99% measured at 4 K. However, a magnetoresistance (MR) value of 9% was obtained at 4.2 K. The low MR compared to the high P could be attributed to spin scattering caused by structural defects at the interface between the EuO and rubrene, due to nonstoichiometry in the EuO.

Differential Expression of Spin Transcripts: Oocyte and Somatic Types

  • Oh, Bermseok;Hwang, Sue-Yun;Solter, Davor;Knowles, Barbara
    • Animal cells and systems
    • /
    • v.5 no.1
    • /
    • pp.71-75
    • /
    • 2001
  • Spin is an abundant maternal transcript comprising up to 0.2% of the total mRNA stock in mouse oocyte, whose protein product is associated with the meiotic spindle. We have identified a new isoform of Spin transcript containing a distinct 5'-untranslated region and the N-terminus of encoded protein. Northern blot and RT-PCR analysis showed that the new isoform is expressed in embryos and most of adult tissues, while the previously identified transcript is expressed solely in mouse oocyte. We thus designated these two Spin isoforms as somatic type and oocyte type, respectively. To investigate the underlying mechanism for the differential expression, genomic structure of Spin was examined. Spin exists as multiple copies in the genome, some of which appears to be pseudogenes, and characterization of Spin genomic clones indicates that oocyte- and somatic-isoforms were generated by alternative splicing. The complex organization of Spin genomic locus and its multifaceted control of expression provide a good model to study the molecular mechanisms of elaborate genome usage in mammals.

  • PDF

Determination of Strongly Interacting Spin Exchange Paths in Cu2(O3PCH2PO3) on the Basis of Spin Dimer Analysis

  • Bae, Hyun-Woo;Koo, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.122-126
    • /
    • 2008
  • The magnetic properties of the organic/inorganic hybrid copper-methylenediphosphonate, Cu2(O3PCH2PO3) were examined by performing the spin dimer analysis based on the extended Hckel tight binding method. In Cu2(O3PCH2PO3) the CuO3 chains made up of edge-sharing CuO5 square pyramidal units are inter-linked by O-P-O bridges. The Cu-O-Cu superexchange interactions of the CuO3 chains are negligibly weak compared with the Cu-O…O-Cu super-superexchange interactions that occur between the CuO3 chains. The spin exchange interactions of Cu2(O3PCH2PO3) are dominated by three super-superexchange interactions, which leads to a three-dimensional antiferromagnetic spin lattice. The strongest spin exchange interactions form isolated spin dimers, which suggests that, to a first approximation, the magnetic properties can be described in terms of an isolated spin dimer model.

Spin Wave Interference in Magnetic Nanostructures

  • Yang, Hyun-Soo;Kwon, Jae-Hyun;Mukherjee, Sankha Subhra;Jamali, Mahdi;Hayashi, Masamitsu
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.7-8
    • /
    • 2011
  • Although yttrium iron garnet (YIG) has provided a great vehicle for the study of spin waves in the past, associated difficulties in film deposition and device fabrication using YIG had limited the applicability of spin waves to practical devices. However, microfabrication techniques have made it possible to characterize both the resonant as well as the travelling characteristics of spin waves in permalloy (Py). A variety of methods have been used for measuring spin waves, including Brillouin light scattering (BLS), magneto-optic Kerr effect (MOKE), vector network analyzer ferromagnetic resonance (VNA-FMR), and pulse inductive microwave magnetometry (PIMM). PIMM is one of the most preferred methodologies of measuring travelling spin waves. In this method, an electrical impulse is applied at one of two coplanar waveguides patterned on top of oxide-insulated Py, producing a local disturbance in the magnetization of the Py. The resulting disturbance travels down the Py in the form of waves, and is inductively picked up by the other coplanar waveguide. We investigate the effect of the pulse width of excitation pulses on the generated spin wave packets using both experimental results and micromagnetic simulations. We show that spin wave packets generated from electrical pulses are a superposition of two separate spin wave packets, one generated from the rising edge and the other from the falling edge, which interfere either constructively or destructively with one another, depending upon the magnitude and direction of the field bias conditions. A method of spin wave amplitude modulation is also presented by the linear superposition of spin waves. We use interfering spin waves resulting from two closely spaced voltage impulses for the modulation of the magnitude of the resultant spin wave packets.

  • PDF

Generalization of the Curie-Weiss Model to the D-dimensional Spin System

  • Hyung-june Woo;Eun Kyung Lee;Eok-Kyun Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.485-487
    • /
    • 1993
  • The critical behavior of the classical D-dimensional spin model (D${\ge}$2), which is intermediate model that link up the Ising (D = 1) and the spherical model (D = ${\infty}$), is studied for the case of constant coupling interaction independent of the spin-spin distance (Curie-Weiss model). Analytical results show that the critical behavior of the present model is in quantitative agreement with the prediction of the phenomenological mean-field theory independent of D. Critical temperature is calculated to be T$_c$=k/JD. This gives a quantitative explanation of the relationship between the spin degree of freedom and the critical temperature.

WSN Data Dissemination Protocol by N-hop Access Guarantee Backbone (N홉 접근보장의 백본을 이용한 무선 센서 네트워크 데이터 전송 프로토콜)

  • Kim, Moon-Seong;Cho, Sang-Hun;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Flooding and SPIN, which are well-known WSN(Wireless Sensor Network) proactive protocols, spontaneously disseminate the sensed data without a request from an arbitrary sink node. However, these methods disseminate the data even to some nodes that do not need it, which is energy inefficient. In this paper, we introduce a semi-proactive protocol to disseminate only to pertinent nodes instead of all nodes in order to overcome this weakness. Thus some nodes, such as arbitrary sink nodes that need the sensed data, could easily obtain the data within some hops. The simulation result shows that the proposed protocol has higher average node energy efficiency than that of well-known earlier work, SPIN. If a proactive protocol, such as SPIN, is changed to semi-proactive and has only a 1-hop burden, then the energy efficiency enhancement is up to about 83% compared with SPIN.

  • PDF

Investigation of n+ Emitter Formation Using Spin-On Dopants for Crystalline Si Solar Cells (Spin-On Dopants를 이용한 결정질 실리콘 태양전지의 n+ 에미터 형성에 관한 연구)

  • Cho, Kyeong-Yeon;Lee, Ji-Hoon;Choi, Jun-Young;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.68-69
    • /
    • 2007
  • To make cost-effective solar cells, We have to use low cost material or make short process time or high temperature process. In solar cells, formation of emitter is basic and important technique according to build-up P-N junction. Diffusion process using spin-on dopants has all of this advantage. In this paper, We investigated n+ emitter formation spin-on dopants to apply crystalline silicon solar cells. We known variation of sheet resistance according to variation of temperature and single-crystalline and multi-crystalline silicon wafer using Honeywell P-8545 phosphorus spin-on dopants. We obtain uniformity of sheet resistance within 3~5% changing RPM of spin coater.

  • PDF

Ground State Computation of Interacting Fermion Systems by using Advanced Stochastic Diagonalization (진보된 혼돈 대각화 방법을 이용한 상호작용하는 페르미온 계의 기저상태 계산)

  • Ahn, Sul-Ah;Cho, Myoung Won
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.209-211
    • /
    • 2007
  • The computational time of Stocahstic Diagonalization (SD) calculation for 2-dimensional interacting fermion systems is reduced by using several methods including symmetry operations. First, each lattice is subdivided into spin-up and spin-down lattices separately, thus allowing a bi-partite lattice. A valid basis state is then obtained from stacking up an up-spin configuration on top of a down-spin configuration. As a consequence, the memory space to be used in saving the trial basis state reduces significantly. Secondly, the matrix elements of a Hamiltonianin are reconrded in a look-up table when making basis state set. Thus the repeated calculation of the matrix elements of the Hamiltonian are avoided during SD process. Thirdly, by applying symmetry operations to the basis state set the original basis state is transformed to a new basis state whose elements are the eigenvectors of the symmetry operations. The ground state wavefunction is constructed from the elements of symmetric - bonding state - basis state set. As a result, the total number of basis states involved in SD calculation is reduced upto 50 percentage by using symmetry operations.

  • PDF