• Title/Summary/Keyword: Spin-Scan

Search Result 32, Processing Time 0.026 seconds

A decoupling controller design for the seeker scan loop with a spin-stabilized platform (자전 안정화형 탐색기 주사루프의 비연성 제어기 설계)

  • 유인억;이상정
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.35-41
    • /
    • 1998
  • This paper presents a decoupling controller of the missile seeker scan loop with a spin-stabilized platform. A precise seeker motion with respect to the scan command is essential for the higher acquisition probability of the target. As the seeker scan loop is a deeply cross-coupled two input two output system, an accurate pointing or scanning for each axis to the target is very difficult, even though provided with the help of a high performance controller. When a decoupling control is applied to the seeker scan loop, the cross-coupling between two axes can be reduced to a remarkable amount. As a low order of controller is required for the real time operation, a PI controller with decoupling filter is suggested and compared with other controllers. A linearized dynamic model of seeker scan loop is used and validated through the comparison of experimental results of step responses.

  • PDF

DIRCM Jamming Effect Analysis of Spin-Scan Reticle Seeker (스핀스캔 레티클 탐색기의 DIRCM 재밍효과 분석)

  • Ahn, Sang-Ho;Kim, Young-Choon;Lee, Kwang-Sei;Kim, Ki-Hong;Kim, Sung-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.776-784
    • /
    • 2009
  • The function of DIRCM(Directed Infrared Countermeasures) jamming is to cause the missile to miss its intended target by disturbing the seeker tracking process. The DIRCM jamming uses the pulsing flashes of IR energy and its frequency, phase and intensity have influence on the missile guidance system. In this paper, we analysis the DIRCM jamming effect of spin-scan reticle seeker. Simulation results show that the jamming effect is greatly influenced by frequency, phase and intensity of the jammer signal.

Alternative analytic method for computing mean observation time in space-telescopes with spin-precession attitude motion

  • Juan, Bermejo-Ballesteros;Javier, Cubas;Francisco, Casas;Enrique, Martinez-Gonzalez
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.449-462
    • /
    • 2022
  • Space-telescopes placed in the Sun-Earth second Lagrange point (L2) observe the sky following a scan strategy that is usually based on a spin-precession motion. Knowing which regions of the sky will be more observed by the instrument is important for the science operations and the instrument calibration. Computing sky observation parameters numerically (discretizing time and the sky) can consume large amounts of time and computational resources, especially when high resolution isrequired.This problem becomesmore critical if quantities are evaluated at detector level instead of considering the instrument entire Field of View (FoV). In previous studies, the authors have derived analytic solutions for quantities that characterize the observation of each point in the sky in terms of observation time according to the scan strategy parameters and the instrument FoV. Analytic solutions allow to obtain results faster than using numerical methods as well as capture detailed characteristics which can be overseen due to discretization limitations. The original approach is based on the analytic expression of the instrument trace over the sky. Such equations are implicit and thusrequiresthe use of numeric solversto compute the quantities.In this work, a new and simpler approach for computing one ofsuch quantities(mean observation time) is presented.The quantity is first computed for pure spin motion and then the effect of the spin axis precession is incorporated under the assumption that the precession motion is slow compared to the spin motion.In this sense, this new approach further simplifies the analytic approach, sparing the use of numeric solvers, which reduces the complexity of the implementation and the computing time.

Higher Order Shimming for Spiral Scan image (초고속 나선 주사 영상을 위한 고차 Shimming)

  • Kim, Pan-Ki;Jeon, Su-Yeol;Ahn, Chang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.341-342
    • /
    • 2007
  • 3T MRI system에서 고해상도 영상을 얻기 위해서는 magnetic field를 균일하게 만들어야 한다. 특히 초고속 영상 기법인 Spiral scan 방식과 EPI scan 방식에서는 이미지 영역에서의 magnetic field의 inhomogeneity에 의해 영상의 왜곡이 심해진다. 본 논문에서는 magnetic field의 inhomogeneity를 단시간 내에 측정하기 위해 fast spin echo방식의 pulse sequence 제안하고, magnetic field를 분석하기 위한 field map의 구성과, field pattern의 효과적인 분석을 통하여, magnetic field를 균일하게 만드는 방법을 제안한다.

  • PDF

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF

Modelling and LQG/LTR Compensator Design of the Seeker Scan-Loop (탐색기의 주사루프 모델링과 LQG/LTR보상기 설계)

  • 황홍연;이호평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2730-2741
    • /
    • 1993
  • A mathematical model of the seeker scan-loop which is composed of a spin-stabilized gyroscope and its driving signal processors is derived. The derived model has a transmission zero pair on the imaginary axis near to the required bandwidth. The LQG/LTR design methodology is evolved for the derived scan-loop model. To implement the designed LQG/LTR compensator to the actual plant, the compensator order is reduced using the internally balanced realization method. The performances of the LQG/LTR compensator are tested and compared with those of the P-control. Especially, stability-robustnessexperiments for model uncertainties represented in the form of time-delays are performed. It is demonstrated that the LQG/STR compensator is actually very robust to model uncertainties.

Effects of NEX on SNR and Artifacts in Parallel MR Images Acquired using Reference Scan

  • Heo, Yeong-Cheol;Lee, Hae-Kag;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.422-427
    • /
    • 2013
  • The aim of this study was to investigate effects of the number of acquisitions (NEX) on signal-to-noise (SNR) and artifacts in SENSE parallel imaging of magnetic resonance imaging (MRI). 3.0T MR System, 8 Channel sensitivity encoding (SENSE) head coils were used along with an in-vivo phantom. Reference sequence of 3D fast field echo (FFE) was consisted of NEX values of 2, 4, 6, 8, 10 and 12. The T2 turbo spin echo (TSE) sequence used for exams achieved SENSE factors of 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 2.8, 3.0, 3.2, 3.5, 3.8 and 4.0. Exams were conducted five times for each SENSE factor to measure signal intensity of the object, the posterior phase-encode direction and frequency direction. And SNR was calculated using mean values. SENSE artifacts were identified as background signal intensity in the phase-encoded direction using MRIcro. It was found that SNR increased but SENSE artifacts reduced with NEX of 4, 8 and 12 when the NEX increased in reference scan. It is therefore concluded that image quality can be improved with NEX of 4, 8 and 12 for reference scanning.

Contrast-Enhanced High-Resolution Intracranial Vessel Wall MRI with Compressed Sensing: Comparison with Conventional T1 Volumetric Isotropic Turbo Spin Echo Acquisition Sequence

  • Chae Jung Park;Jihoon Cha;Sung Soo Ahn;Hyun Seok Choi;Young Dae Kim;Hyo Suk Nam;Ji Hoe Heo;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.21 no.12
    • /
    • pp.1334-1344
    • /
    • 2020
  • Objective: Compressed sensing (CS) has gained wide interest since it accelerates MRI acquisition. We aimed to compare the 3D post-contrast T1-weighted volumetric isotropic turbo spin echo acquisition (VISTA) with CS (VISTA-CS) and without CS (VISTA-nonCS) in intracranial vessel wall MRIs (VW-MRI). Materials and Methods: From April 2017 to July 2018, 72 patients who underwent VW-MRI, including both VISTA-CS and VISTA-nonCS, were retrospectively enrolled. Wall and lumen volumes, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured from normal and lesion sites. Two neuroradiologists independently evaluated overall image quality and degree of normal and lesion wall delineation with a four-point scale (scores ≥ 3 defined as acceptable). Results: Scan coverage was increased in VISTA-CS to cover both anterior and posterior circulations with a slightly shorter scan time compared to VISTA-nonCS (approximately 7 minutes vs. 8 minutes). Wall and lumen volumes were not significantly different with VISTA-CS or VISTA-nonCS (interclass correlation coefficient = 0.964-0.997). SNR was or trended towards significantly higher values in VISTA-CS than in VISTA-nonCS. At normal sites, CNR was not significantly different between two sequences (p = 0.907), whereas VISTA-CS provided lower CNR in lesion sites compared with VISTA-nonCS (p = 0.003). Subjective wall delineation was superior with VISTA-nonCS than with VISTA-CS (p = 0.019), although overall image quality did not differ (p = 0.297). The proportions of images with acceptable quality were not significantly different between VISTA-CS (83.3-97.8%) and VISTA-nonCS (75-100%). Conclusion: CS may be useful for intracranial VW-MRI as it allows for larger scan coverage with slightly shorter scan time without compromising image quality.

Estimation of the Sea Surface Radiation from GMS-5 Visible Data (GMS-5 가시영역 자료를 이용한 해면 일사량 추정)

  • Park, Kyung-Won;Kwon, Byung-Hyuk;Kim, Young-Sup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2003
  • Surface solar radiation over the sea is estimated using the visible and infrared spin scan radiometer (VISSR) data onboard Geostationary Meteorological Satellite(GMS)-5 from January 1997 to December 1997 in clear and cloudy conditions. The hourly insolation is estimated with a spatial resolution of $5km{\times}5km$ grid. The island pyranometer operated by the Japan Meteorological Agency(JMA) is used to validate the estimated insolation. The root mean square error of the hourly estimated insolation is $104W/m^2$ with 0.91 of the correlation coefficient. In the variability of the hourly solar radiation investigated around the Korean Peninsula, the maximum value of solar radiation is found in June at the Yellow Sea and the East Sea, while in August at the South Sea because of low pressure conditions and front in June.

  • PDF

Effective Dose Determination From CT Head & Neck Region (두경부(Head & Neck) CT 검사 시 장기의 유효선량 측정)

  • Yun, Jae-Hyeok;Lee, Kwang-Weon;Cho, Young-Ki;Choi, Ji-Won;Lee, Joon-Il
    • Journal of radiological science and technology
    • /
    • v.34 no.2
    • /
    • pp.105-116
    • /
    • 2011
  • In this study, we present the measurements of effective dose from CT of head & neck region. A series of dose measurements in anthropomorphic Rando phantom was conducted using a radio photoluminescent glass rod dosimeter to evaluate effective doses of organs of head and neck region from the patient. The experiments were performed with respect to four anatomic regions of head & neck: optic nerve, pons, cerebellum, and thyroid gland. The head & neck CT protocol was used in the single scan (Brain, 3D Facial, Temporal, Brain Angiography and 3D Cervical Spine) and the multiple scan (Brain+Brain Angiography, Brain+3D Facial, Brain+Temporal, Brain+3D Cervical spine, Brain+3D Facial+Temporal, Brain+3D Cervical Spine+Brain Angiography). The largest effective dose was measured at optic nerve in Brain CT and Brain Angiography. The largest effective dose was delivered to the thyroid grand in 3D faical CT and 3D cervical spine, and to the pons in Temporal CT. In multiple scans, the higher effective dose was measured in the thyroid grand in Brain+3D Facial, Brain+3D Cervical Spine, Brain+3D Facial+Temporal and Brain+3D Cervical Spine+Brain Angiography. In addition, the largest effective dose was delivered to the cerebellum in Brain CT+Brain Angiography CT and higher effective dose was delivered to the pons in Brain+Temporal CT. The results indicate that in multiple scan of Brain+3D Cervical Spine+Brain Angiography, effective dose was 2.52 mSv. This is significantly higher dose than the limitation of annual effective dose of 1 mSv. The effective dose to the optic nerve was 0.31 mSv in Brain CT, which shows a possibility of surpassing the limitation of 1 mSv by furthre examination. Therefore, special efforts should be made in clinical practice to reduce dose to the patients.