• Title/Summary/Keyword: Spin parameter

Search Result 97, Processing Time 0.027 seconds

PSF Deconvolution on the Integral Field Unit Spectroscopy Data

  • Chung, Haeun;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.58.4-58.4
    • /
    • 2019
  • We present the application of the Point Spread Function (PSF) deconvolution method to the astronomical Integral Field Unit (IFU) Spectroscopy data focus on the restoration of the galaxy kinematics. We apply the Lucy-Richardson deconvolution algorithm to the 2D image at each wavelength slice. We make a set of mock IFU data which resemble the IFU observation to the model galaxies with a diverse combination of surface brightness profile, S/N, line-of-sight geometry and Line-Of-Sight Velocity Distribution (LOSVD). Using the mock IFU data, we demonstrate that the algorithm can effectively recover the stellar kinematics of the galaxy. We also show that lambda_R_e, the proxy of the spin parameter can be correctly measured from the deconvolved IFU data. Implementation of the algorithm to the actual SDSS-IV MaNGA IFU survey data exhibits the noticeable difference on the 2D LOSVD, geometry, lambda_R_e. The algorithm can be applied to any other regular-grid IFS data to extract the PSF-deconvolved spatial information.

  • PDF

Flexibility Improvement of InGaZnO Thin Film Transistors Using Organic/inorganic Hybrid Gate Dielectrics

  • Hwang, B.U.;Kim, D.I.;Jeon, H.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.341-341
    • /
    • 2012
  • Recently, oxide semi-conductor materials have been investigated as promising candidates replacing a-Si:H and poly-Si semiconductor because they have some advantages of a room-temperature process, low-cost, high performance and various applications in flexible and transparent electronics. Particularly, amorphous indium-gallium-zinc-oxide (a-IGZO) is an interesting semiconductor material for use in flexible thin film transistor (TFT) fabrication due to the high carrier mobility and low deposition temperatures. In this work, we demonstrated improvement of flexibility in IGZO TFTs, which were fabricated on polyimide (PI) substrate. At first, a thin poly-4vinyl phenol (PVP) layer was spin coated on PI substrate for making a smooth surface up to 0.3 nm, which was required to form high quality active layer. Then, Ni gate electrode of 100 nm was deposited on the bare PVP layer by e-beam evaporator using a shadow mask. The PVP and $Al_2O_3$ layers with different thicknesses were used for organic/inorganic multi gate dielectric, which were formed by spin coater and atomic layer deposition (ALD), respectively, at $200^{\circ}C$. 70 nm IGZO semiconductor layer and 70 nm Al source/drain electrodes were respectively deposited by RF magnetron sputter and thermal evaporator using shadow masks. Then, IGZO layer was annealed on a hotplate at $200^{\circ}C$ for 1 hour. Standard electrical characteristics of transistors were measured by a semiconductor parameter analyzer at room temperature in the dark and performance of devices then was also evaluated under static and dynamic mechanical deformation. The IGZO TFTs incorporating hybrid gate dielectrics showed a high flexibility compared to the device with single structural gate dielectrics. The effects of mechanical deformation on the TFT characteristics will be discussed in detail.

  • PDF

Aging effect of Solution-Processed InGaZnO Thin-Film-Transistors Annealed by Conventional Thermal Annealing and Microwave Irradiation

  • Kim, Gyeong-Jun;Lee, Jae-Won;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.211.1-211.1
    • /
    • 2015
  • 최근 용액 공정을 이용한 산화물 반도체에 대한 연구가 활발히 진행되고 있다. 넓은 밴드갭을 가지고 있는 산화물 반도체는 높은 투과율을 가지고 있어 투명 디스플레이에 적용이 가능하다. 기존의 박막 진공증착 방법은 진공상태를 유지하기 위한 장비의 가격이 비싸며, 대면적의 어려움, 높은 생산단가 등으로 생산율이 높지 않다. 하지만 용액 공정을 이용하면 대기압에서 증착이 가능하고 대면적화가 가능하다. 그리고 각각의 조성비를 조절하는 것이 가능하다. 이러한 장점에도 불구하고, 소자의 신뢰성이나 저온공정은 중요한 이슈이다. Instability는 threshold voltage (Vth)의 shift 및 on/off switching의 신뢰성과 관련된 parameter이다. 용액은 소자의 전기적 특성을 열화 시키는 수분 과 탄소계열의 불순물을 다량 포함 하고 있어 고품질의 박막을 형성하기 위해서는 고온의 열처리가 필요하다. 기존의 열처리는 고온에서 장시간 이루어지기 때문에 유리나 플라스틱, 종이 기판의 소자에서는 불가능하지만 $100^{\circ}C$ 이하의 저온 공정인 microwave를 이용하면 유리, 플라스틱, 종이 기판에서도 적용이 가능하다. 본 연구에서는 산화물 반도체 중에서 InGaZnO (IGZO)를 용액 공정으로 제작한 juctionless thin-film transistor를 제작하여 기존의 열처리를 이용하여 처리한 소자와 microwave를 이용해서 열처리한 소자의 전기적 특성을 한 달 동안 관찰 하였다. 또한 In:Zn의 비율을 고정한 후 Ga의 비율을 달리하여 특성을 비교하였다. 먼저 p-type bulk silicon 위에 SiO2 산화막이 100 nm 증착된 기판에 RCA 클리닝을 진행 하였고, solution InGaZnO 용액을 spin coating 방식으로 증착하였다. Coating 후에, solvent와 수분을 제거하기 위해서 $180^{\circ}C$에서 10분 동안 baking공정을 하였다. 이후 furnace열처리와 microwave열처리를 비교하기 위해 post-deposition-annealing (PDA)으로 furnace N2 분위기에서 $600^{\circ}C$에서 30분, microwave를 1800 W로 2분 동안 각각의 샘플에 진행하였다. 또한, HP 4156B semiconductor parameter analyzer를 이용하여 제작된 TFT의 transfer curve를 측정하였다. 그 결과, microwave 열처리한 소자의 경우 기존의 furnace 열처리 소자와 비교하여 높은 mobility, 낮은 hysteresis 값을 나타내었으며, 1달간 소자의 특성을 관찰하였을 때 microwave 열처리한 소자의 경우 전기적 특성이 거의 변하지 않는 것을 확인하였다. 따라서 향후 용액공정, 저온공정을 요구하는 소자 공정에 있어 열처리방법으로 microwave를 이용한 활용이 기대된다.

  • PDF

Characteristics of the Ekman Layer Flow over a Rough Bottom (거친 바닥 위의 에크만 경계층 내의 흐름의 특성)

  • Na, Jung-Yul;Kim, Tae-Yeon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • Ekman layer equation with rough-bottom boundary condition has been solved to determine the effect of roughness on the magnitude of Ekman veering. The bottom boundary condition and the flow field were expanded in a power of roughness (h) which is always smaller than the Ekman layer thickness (${\delta}_E$). By changing the magnitude of roughness parameter (h/${\delta}_E$), the magnitude of the veering, which rotates counterclockwise from the interior geostrophic flow, has been computed. At a fixed depth within the Ekman layer, the magnitude of veering increases as the roughness parameter increases. However, the cross-isobar flux turns out to decrease with increasing roughness. To verify the analytic solution, laboratory experiments were carried out. Rough-bottom cylinderical container filled with homogeneous fluid was sit on a rotating table. The flow pattern during the period of steady spin-up shows that the degree of veering coincides well with the analytic results for various roughness parameters.

  • PDF

Band structure, electron-phonon interaction and superconductivity of yttrium hypocarbide

  • Dilmi, S.;Saib, S.;Bouarissa, N.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1338-1344
    • /
    • 2018
  • Band parameters and superconductivity of yttrium hypocarbide ($Y_2C$) have been investigated. The computations are performed using first-principles pseudopotential method within a generalized gradient approximation. The equilibrium lattice parameters have been determined and compared with experiment. Moreover, the material of interest is found to be stiffer for strains along the a-axis than those along the c-axis. A band-structure analysis of $Y_2C$ implied that the latter has a metallic character. The examination of Eliashberg Spectral Function indicates that Y-related phonon modes as well as C-related phonon modes are considerably involved in the progress of scattering of electrons. By integrating this function, the value of the average electron-phonon coupling parameter (${\lambda}$) is found to be 0.362 suggesting thus that $Y_2C$ is a weak coupling Bardeen-Copper-Schrieffer superconductor. The use of a reasonable value for the effective Coulomb repulsion parameter (${\mu}^*=0.10$) yielded a superconducting critical temperature $T_c$ of 0.59 K which is comparable with a previous theoretical value of 0.33 K. Upon compression (at pressure of 10 GPa) ${\lambda}$ and $T_c$ are increased to be 0.366 and 0.89 K, respectively, showing thus the pressure effect on the superconductivity in $Y_2C$. The spin-polarization calculations showed that the difference in the total energy between the magnetic and non-magnetic $Y_2C$ is weak.

Resistance Switching Mechanism of Metal-Oxide Nano-Particles Memory on Graphene Layer

  • Lee, Dong-Uk;Kim, Dong-Wook;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.318-318
    • /
    • 2012
  • A graphene layer is most important materials in resent year to enhance the electrical properties of semiconductor device due to high mobility, flexibility, strong mechanical resistance and transparency[1,2]. The resistance switching memory with the graphene layer have been reported for next generation nonvolatile memory device[3,4]. Also, the graphene layer is able to improve the electrical properties of memory device because of the high mobility and current density. In this study, the resistance switching memory device with metal-oxide nano-particles embedded in polyimide layer on the graphene mono-layer were fabricated. At first, the graphene layer was deposited $SiO_2$/Si substrate by using chemical vapor deposition. Then, a biphenyl-tetracarboxylic dianhydride-phenylene diamine poly-amic-acid was spin coated on the deposited metal layer on the graphene mono-layer. Then the samples were cured at $400^{\circ}C$ for 1 hour in $N_2$ atmosphere after drying at $135^{\circ}C$ for 30 min through rapid thermal annealing. The deposition of aluminum layer with thickness of 200 nm was done by a thermal evaporator. The electrical properties of device were measured at room temperature using an HP4156a precision semiconductor parameter analyzer and an Agilent 81101A pulse generator. We will discuss the switching mechanism of memory device with metal-oxide nano-particles on the graphene mono-layer.

  • PDF

Extraction of electrical parameters as a function of post-annealing in organic solar cells (유기 태양전지의 후열처리온도에 따른 전기적 Parameter들의 추출)

  • Kim, Dong-Young;Kim, Ji-Hwan;Lee, Hye-Jee;Kim, Hae-Jin;Sohn, Sun-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.460-461
    • /
    • 2009
  • We studied the effects of post-annealing treatment on poly(3-hexylthiophene)(P3HT, donor):[6,6]-phenyl $C_{61}$ butyric acid methyl ester(PCBM, acceptor) blend film as an active layer in the organic solar cells(OSCs). For the formation of the active layer, 3 wt.% P3HT:PCBM solution in chlorobenzene were deposited by spin-coating method. In order to optimize the performance of OSCs, the P3HT crystallization and the redistribution of PCBM cluster at P3HT:PCBM composition as a function of post-annealing condition from room temperature to $200^{\circ}C$ were measured by the Hall effect and the UV-vis Spectrophotometer. We thought that the improved efficiency in the OSCs with post-annealing treatment at $150^{\circ}C$ can be explained by the efficient separation or collection of the photogenerated excitons at donor-acceptor interface by P3HT crystallization.

  • PDF

Kinematic properties of the Ursa Major Cluster

  • Kim, YoungKwang;Lee, Young Sun;Beers, Timothy C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.30.3-31
    • /
    • 2015
  • We present a kinematic analysis of 172 likely member galaxies of the Ursa Major Cluster. In order to understand the dynamical state of the cluster, we investigate the correlation of the cluster morphology with rotation, the velocity dispersion profile, and the rotation amplitude parallel to the global rotation direction. Both the minor axis and the rotation are very well-aligned with the global rotation axis in the outer region at half radius (> 0.5 $R_{max}$), but not in the inner region. The cluster exhibits low velocity dispersion and rotation amplitude profiles in the inner region, but higher in the outer. Both profiles exhibit outwardly increasing trends, suggesting an inside-out transfer of angular momentum of dark matter via violent relaxation, as revealed by a recent off-axis major-merging simulation. From Dressler-Schectman plots in the plane of galactic positions, and velocity versus position angle of galaxy, we are able to divide the Ursa Major Cluster into two substructures: Ursa Major South (UMS) and Ursa Major North (UMN). We derive a mass of $3.2{\times}10^{14}M_{\odot}$ for the cluster through the two-body analysis by the timing argument with the distance information (37 for UMN and 36 for UMS) and the spin parameter of ${\lambda}=0.049$. The two substructures appear to have passed each other 4.4 Gyr ago and are moving away to the maximum separation.

  • PDF

Fabrication and characteristics PbTiO3/P(VDF/TrFE) thin films for pyroelectric infrared sensor (초전형 적외선 센서용 PbTiO3/P(VDF/TrFE) 박막의 제조 및 특성)

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.10-15
    • /
    • 2003
  • $PbTiO_3$/P(VDF/TrFE) thin film for pyroelectric infrared sensor's sensing materials have been fabricated by spin coating technique. 65 wt% VDF and 35 wt% TrFE were for P(VDF/TrFE) powder. $PbTiO_3$ powder was used for a ceramic - polymer composites materials. Surface of composite thin film by ceramic fraction factor was observed by SEM. The $PbTiO_3$/P(VDF/TrFE) thin film capacitancy, dielectric constant and dielectric loss measured by impedence analyzer(HP4192A) and pyroelectric coefficient was measured by semiconductor parameter analyzer(HP4145B).

Bosonic Insulator Phase beyond the Superconductor-Insulator Transition in Granular In/InO$_x$ Thin Films

  • Kim, Ki-Joon;Lee, Hu-Jong
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.222-222
    • /
    • 1999
  • From extensive measurements of the resistance and the dynamic resistance as functions of magnetic field and temperature, we find that the transport in the insulating state beyond the superconductor-insulator (S-I) transition is dominated by bosons(Cooper pairs and/or vortices) and cannot be described by the theory of the fermionic insulating phase. The maximum of the magnetoresistance at B = B$_m$ and the following negative slope in R(B) with increasing field can be explained by the crossover from the "Bose-glass" to the "Fermi-glass" phase as suggested by Paalanen, Hebard, and Ruel. The zero bias peak in dv/dl for biases below the characteristic voltage V$_c$ (or current $I_c$), gives a clue for the assumption of the "dirty boson" model which states that the insulating state above the critical magnetic field is the phase where Cooper pairs are localized due to the Coulomb blockade with a nonvanishing order parameter. The shift to a lower value of the critical magnetic field by overlaying thin Au layer, which is known as a strong spin-orbit scatterer, also supports the bosonic nature of the S-I transition.

  • PDF