DOI QR코드

DOI QR Code

Band structure, electron-phonon interaction and superconductivity of yttrium hypocarbide

  • Dilmi, S. (Laboratory of Materials Physics and Its Applications, University of M'sila) ;
  • Saib, S. (Laboratory of Materials Physics and Its Applications, University of M'sila) ;
  • Bouarissa, N. (Laboratory of Materials Physics and Its Applications, University of M'sila)
  • Received : 2018.03.26
  • Accepted : 2018.07.15
  • Published : 2018.11.30

Abstract

Band parameters and superconductivity of yttrium hypocarbide ($Y_2C$) have been investigated. The computations are performed using first-principles pseudopotential method within a generalized gradient approximation. The equilibrium lattice parameters have been determined and compared with experiment. Moreover, the material of interest is found to be stiffer for strains along the a-axis than those along the c-axis. A band-structure analysis of $Y_2C$ implied that the latter has a metallic character. The examination of Eliashberg Spectral Function indicates that Y-related phonon modes as well as C-related phonon modes are considerably involved in the progress of scattering of electrons. By integrating this function, the value of the average electron-phonon coupling parameter (${\lambda}$) is found to be 0.362 suggesting thus that $Y_2C$ is a weak coupling Bardeen-Copper-Schrieffer superconductor. The use of a reasonable value for the effective Coulomb repulsion parameter (${\mu}^*=0.10$) yielded a superconducting critical temperature $T_c$ of 0.59 K which is comparable with a previous theoretical value of 0.33 K. Upon compression (at pressure of 10 GPa) ${\lambda}$ and $T_c$ are increased to be 0.366 and 0.89 K, respectively, showing thus the pressure effect on the superconductivity in $Y_2C$. The spin-polarization calculations showed that the difference in the total energy between the magnetic and non-magnetic $Y_2C$ is weak.

Keywords

References

  1. X. Zhang, Z.W. Xiao, H.C. Lei, Y. Toda, S. Matsuishi, T. Kamiya, S. Ueda, H. Hosono, Chem. Mater. 26 (2014) 6638. https://doi.org/10.1021/cm503512h
  2. T. Inoshita, S. Jeong, N. Hamada, H. Hosono, Phys. Rev. X 4 (2014) 031023.
  3. J.L. Dye, Electrons as anions, Science 301 (2003) 607. https://doi.org/10.1126/science.1088103
  4. J.L. Dye, Electrides: early examples of quantum confinement, Acc. Chem. Res. 42 (2009) 1564. https://doi.org/10.1021/ar9000857
  5. M. Atoji, M. Kikuchi, J. Chem. Phys. 51 (1969) 3863. https://doi.org/10.1063/1.1672603
  6. S. Otani, K. Hirata, Y. Adachi, N. Ohashi, J. Cryst. Growth 454 (2016) 15. https://doi.org/10.1016/j.jcrysgro.2016.08.048
  7. J. Park, K. Lee, S.Y. Lee, C.N. Nandadasa, S. Kim, K.H. Lee, Y.H. Lee, H. Hosono, S.-G. Kim, S.W. Kim, J. Am. Chem. Soc. 139 (2017) 615. https://doi.org/10.1021/jacs.6b11950
  8. J. Park, J.-Y. Hwang, K.H. Lee, S.-G. Kim, K. Lee, S.W. Kim, J. Am. Chem. Soc. 139 (2017) 17277 http://www.sciencedirect.com/science/article/pii/S0022024816304614-!. https://doi.org/10.1021/jacs.7b10338
  9. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73 (2001) 515 http://www.pwscf.org. https://doi.org/10.1103/RevModPhys.73.515
  10. S. Saib, N. Bouarissa, P. Rodriguez-Hernandez, A. Munoz, J. Appl. Phys. 103 (2008) 013506 https://doi.org/10.1063/1.2828151
  11. S. Saib, N. Bouarissa, P. Rodriguez-Hernandez, A. Munoz, J. Appl. Phys.104(2008) 076107. https://doi.org/10.1063/1.2981201
  12. N. Bouarissa, Physica B 406 (2011) 2583. https://doi.org/10.1016/j.physb.2011.03.073
  13. P.Y. Yu, M. Cardona, Vibrational Properties of Semiconductors, and Electronphonon Interactions, in: Fundamentals of Semiconductors, Graduate Texts in Physics, Springer, Berlin, Heidelberg, 1996.
  14. N. Bouarissa, S. Saib, J. Appl. Phys. 108 (2010) 113710. https://doi.org/10.1063/1.3517065
  15. S. Saib, N. Bouarissa, P. Rodriguez-Hernandez, A. Munoz, Opt. Mater. 35 (2013) 2303. https://doi.org/10.1016/j.optmat.2013.06.021
  16. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  17. R. Stumpf, X. Gonge, M. Scheffler, A List of Separable,Norm-conserving, Ab Initio Pseudopotentials, Fritz-Haber-Institut, Berlin, 1990.
  18. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188. https://doi.org/10.1103/PhysRevB.13.5188
  19. S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58 (1987) 1861. https://doi.org/10.1103/PhysRevLett.58.1861
  20. P.B. Allen, Phys. Rev. B 6 (1972) 2577. https://doi.org/10.1103/PhysRevB.6.2577
  21. P.B. Allen, R.C. Dynes, Phys. Rev. B 12 (1975) 905. https://doi.org/10.1103/PhysRevB.12.905
  22. V.Z. Kresin, G.O. Zaitsev, Sov. Phys. JETP 47 (1978) 983.
  23. J.P. Maehlen, V.A. Yartys, B.C. Hauback, J. Alloys Compd. 351 (2003) 151. https://doi.org/10.1016/S0925-8388(02)01028-9
  24. Y. He, J. Alloys Compd. 654 (2016) 180. https://doi.org/10.1016/j.jallcom.2015.09.133
  25. M.I. Aroyo, J.M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Bilbao crystallographic server I: databases and crystallographic computing programs, Z. Kristallogr. 221 (2006) 15.
  26. N. Bouarissa, Mater. Chem. Phys. 73 (2002) 51. https://doi.org/10.1016/S0254-0584(01)00347-9
  27. G.J. Ackland, Rep. Prog. Phys. 64 (2001) 483. https://doi.org/10.1088/0034-4885/64/4/202
  28. N. Bouarissa, Phys. Status Solidi B 231 (2002) 391. https://doi.org/10.1002/1521-3951(200206)231:2<391::AID-PSSB391>3.0.CO;2-J
  29. A. Mujica, A. Rubio, A. Munoz, R.J. Needs, Rev. Mod. Phys. 75 (2003) 863. https://doi.org/10.1103/RevModPhys.75.863
  30. S. Saib, N. Bouarissa, Phys. Status Solidi B 244 (2007) 1063. https://doi.org/10.1002/pssb.200642441

Cited by

  1. Electron-Phonon Coupling and Superconductivity in YC2 Compound upon Compression vol.34, pp.5, 2018, https://doi.org/10.1007/s10948-021-05814-0
  2. Pressure-induced superconductivity in Li-Te electrides vol.104, pp.13, 2018, https://doi.org/10.1103/physrevb.104.134505
  3. Proposed Superconducting Electride $ \mathrm{Li}_{6}\mathrm{C}$ by $ sp$ -Hybridized Cage States at Moderate Pressures vol.127, pp.15, 2018, https://doi.org/10.1103/physrevlett.127.157002