• 제목/요약/키워드: Spiking Neural Networks

검색결과 21건 처리시간 0.023초

뉴로모픽 포토닉스 기술 동향 (Trends in Neuromorphic Photonics Technology)

  • 권용환;김기수;백용순
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.34-41
    • /
    • 2020
  • The existing Von Neumann architecture places limits to data processing in AI, a booming technology. To address this issue, research is being conducted on computing architectures and artificial neural networks that simulate neurons and synapses, which are the hardware of the human brain. With high-speed, high-throughput data communication infrastructures, photonic solutions today are a mature industrial reality. In particular, due to the recent outstanding achievements of artificial neural networks, there is considerable interest in improving their speed and energy efficiency by exploiting photonic-based neuromorphic hardware instead of electronic-based hardware. This paper covers recent photonic neuromorphic studies and a classification of existing solutions (categorized into multilayer perceptrons, convolutional neural networks, spiking neural networks, and reservoir computing).

뉴로모픽 환경에서 QoS를 고려한 최적의 SNN 모델 파라미터 생성 기법 (QoS-Aware Optimal SNN Model Parameter Generation Method in Neuromorphic Environment)

  • 김서연;김봉재;정진만
    • 스마트미디어저널
    • /
    • 제12권4호
    • /
    • pp.19-26
    • /
    • 2023
  • 뉴로모픽 아키텍처 기반 하드웨어를 이용한 IoT 엣지 서비스는 단말 장치에서 지능형 처리를 수행할 수 있기 때문에 자율형 IoT 응용 지원에 적합하다. 그러나 IoT 개발자가 뉴로모픽 하드웨어에서 사용되는 SNN을 이해하기에는 어려움이 있다. 본 논문에서는 뉴로모픽 하드웨어의 제약조건을 고려하며 사용자의 요구 성능을 만족하는 SNN 모델 생성 기법을 제안한다. 제안 기법은 프로파일링된 데이터에서 최적의 SNN 모델 파라미터를 찾도록 전처리된 데이터로 사전 학습한 모델을 활용한다. 전체 탐색 기법과 비교 결과, 두 기법 모두 사용자 요구사항을 모두 만족하였지만, 제안 기법이 수행 시간 측면에서 더 좋은 성능을 보였다. 또한, 신규 하드웨어의 제약조건을 명확히 알지 못하더라도 새로운 하드웨어의 프로파일링된 데이터를 활용할 수 있으므로 높은 확장성을 제공할 수 있다.

인공지능 뉴로모픽 반도체 기술 동향 (Trend of AI Neuromorphic Semiconductor Technology)

  • 오광일;김성은;배영환;박경환;권영수
    • 전자통신동향분석
    • /
    • 제35권3호
    • /
    • pp.76-84
    • /
    • 2020
  • Neuromorphic hardware refers to brain-inspired computers or components that model an artificial neural network comprising densely connected parallel neurons and synapses. The major element in the widespread deployment of neural networks in embedded devices are efficient architecture for neuromorphic hardware with regard to performance, power consumption, and chip area. Spiking neural networks (SiNNs) are brain-inspired in which the communication among neurons is modeled in the form of spikes. Owing to brainlike operating modes, SNNs can be power efficient. However, issues still exist with research and actual application of SNNs. In this issue, we focus on the technology development cases and market trends of two typical tracks, which are listed above, from the point of view of artificial intelligence neuromorphic circuits and subsequently describe their future development prospects.

음성 데이터 전처리 기법에 따른 뉴로모픽 아키텍처 기반 음성 인식 모델의 성능 분석 (Performance Analysis of Speech Recognition Model based on Neuromorphic Architecture of Speech Data Preprocessing Technique)

  • 조진성;김봉재
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.69-74
    • /
    • 2022
  • 뉴로모픽 아키텍처에서 동작하는 SNN (Spiking Neural Network) 은 인간의 신경망을 모방하여 만들어졌다. 뉴로모픽 아키텍처 기반의 뉴로모픽 컴퓨팅은 GPU를 이용한 딥러닝 기법보다 상대적으로 낮은 전력을 요구한다. 이와 같은 이유로 뉴로모픽 아키텍처를 이용하여 다양한 인공지능 모델을 지원하고자 하는 연구가 활발히 일어나고 있다. 본 논문에서는 음성 데이터 전처리 기법에 따른 뉴로모픽 아키텍처 기반의 음성 인식 모델의 성능 분석을 진행하였다. 실험 결과 푸리에 변환 기반 음성 데이터 전처리시 최대 84% 정도의 인식 정확도 성능을 보임을 확인하였다. 따라서 뉴로모픽 아키텍처 기반의 음성 인식 서비스가 효과적으로 활용될 수 있음을 확인하였다.

브레인 모사 인공지능 기술 (Brain-Inspired Artificial Intelligence)

  • 김철호;이정훈;이성엽;우영춘;백옥기;원희선
    • 전자통신동향분석
    • /
    • 제36권3호
    • /
    • pp.106-118
    • /
    • 2021
  • The field of brain science (or neuroscience in a broader sense) has inspired researchers in artificial intelligence (AI) for a long time. The outcomes of neuroscience such as Hebb's rule had profound effects on the early AI models, and the models have developed to become the current state-of-the-art artificial neural networks. However, the recent progress in AI led by deep learning architectures is mainly due to elaborate mathematical methods and the rapid growth of computing power rather than neuroscientific inspiration. Meanwhile, major limitations such as opacity, lack of common sense, narrowness, and brittleness have not been thoroughly resolved. To address those problems, many AI researchers turn their attention to neuroscience to get insights and inspirations again. Biologically plausible neural networks, spiking neural networks, and connectome-based networks exemplify such neuroscience-inspired approaches. In addition, the more recent field of brain network analysis is unveiling complex brain mechanisms by handling the brain as dynamic graph models. We argue that the progress toward the human-level AI, which is the goal of AI, can be accelerated by leveraging the novel findings of the human brain network.

Comparison of Artificial Neural Networks for Low-Power ECG-Classification System

  • Rana, Amrita;Kim, Kyung Ki
    • 센서학회지
    • /
    • 제29권1호
    • /
    • pp.19-26
    • /
    • 2020
  • Electrocardiogram (ECG) classification has become an essential task of modern day wearable devices, and can be used to detect cardiovascular diseases. State-of-the-art Artificial Intelligence (AI)-based ECG classifiers have been designed using various artificial neural networks (ANNs). Despite their high accuracy, ANNs require significant computational resources and power. Herein, three different ANNs have been compared: multilayer perceptron (MLP), convolutional neural network (CNN), and spiking neural network (SNN) only for the ECG classification. The ANN model has been developed in Python and Theano, trained on a central processing unit (CPU) platform, and deployed on a PYNQ-Z2 FPGA board to validate the model using a Jupyter notebook. Meanwhile, the hardware accelerator is designed with Overlay, which is a hardware library on PYNQ. For classification, the MIT-BIH dataset obtained from the Physionet library is used. The resulting ANN system can accurately classify four ECG types: normal, atrial premature contraction, left bundle branch block, and premature ventricular contraction. The performance of the ECG classifier models is evaluated based on accuracy and power. Among the three AI algorithms, the SNN requires the lowest power consumption of 0.226 W on-chip, followed by MLP (1.677 W), and CNN (2.266 W). However, the highest accuracy is achieved by the CNN (95%), followed by MLP (76%) and SNN (90%).

AI 컴포넌트 추상화 모델 기반 자율형 IoT 통합개발환경 구현 (Implementation of Autonomous IoT Integrated Development Environment based on AI Component Abstract Model)

  • 김서연;윤영선;은성배;차신;정진만
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.71-77
    • /
    • 2021
  • 최근 이질적인 하드웨어 특성을 고려한 IoT 응용 지원 프레임워크의 효율적인 프로그램 개발이 요구되고 있다. 또한, 인간의 뇌를 모사하여 스스로 학습 및 자율적 컴퓨팅이 가능한 뉴로모픽 아키텍처의 발전으로 하드웨어 지원의 범위가 넓어지고 있다. 하지만 기존 대부분의 IoT 통합개발환경에서는 AI(Artificial Intelligence) 기능을 지원하거나 뉴로모픽 아키텍처와 같은 다양한 하드웨어와 결합된 서비스 지원이 어렵다. 본 논문에서는 2세대 인공 신경망 및 3세대 스파이킹 신경망 모델을 모두 지원하는 AI 컴포넌트 추상화 모델을 설계하고 제안 모델 기반의 자율형 IoT 통합개발환경을 구현하였다. IoT 개발자는 AI 및 스파이킹 신경망에 대한 지식이 없어도 제안 기법을 통해 자동으로 AI 컴포넌트를 생성할 수 있으며 런타임에 따라 코드 변환이 유연하여 개발 생산성이 높다. 제안 기법의 실험을 진행하여 가상 컴포넌트 계층으로 인한 변환 지연시간이 발생할 수 있으나 차이가 크지 않음을 확인하였다.

IoT 컴퓨팅 환경을 위한 뉴로모픽 기반 플랫폼의 추론시간 단축 (Reduction of Inference time in Neuromorphic Based Platform for IoT Computing Environments)

  • 김재섭;이승연;홍지만
    • 스마트미디어저널
    • /
    • 제11권2호
    • /
    • pp.77-83
    • /
    • 2022
  • 뉴로모픽 아키텍처는 스파이킹 신경망(SNN, Spiking Neural Network) 모델을 사용하여, 추론 실험을 통해 스파이크 값이 많이 누적될수록 정확한 결과를 도출한다. 추론 결과가 특정 값으로 수렴할 경우, 추론 실험을 더 진행해도 결과의 변화가 작아 소비 전력이 더 커질 수 있다. 특히, 인공지능 기반 IoT 환경에서는 전력 낭비는 큰 문제가 될 수 있다. 따라서 본 논문에서는 뉴로모픽 아키텍처 환경에서 추론 이미지 노출 시간을 조절하여 추론 시간을 단축함으로써 인공지능 기반 IoT의 전력 낭비를 줄이는 기법을 제안한다. 제안한 기법은 추론 정확도의 변화를 반영하여 다음 추론 이미지 노출 시간을 계산한다. 또한, 추론 정확도의 변화량 반영비율을 계수 값으로 조절할 수 있으며, 다양한 계수 값의 비교 실험을 통해 최적의 계수 값을 찾는다. 제안한 기법은 목표 정확도에 해당하는 추론 이미지 노출 시간은 선형 기법보다 크지만 최종 추론 시간은 선형 기법보다 적다. 제안한 기법의 성능을 측정하고 평가한 결과, 제안한 기법을 적용한 추론 실험이 선형 기법을 적용한 추론 실험보다 최종 노출 시간을 약 90% 단축할 수 있음을 확인한다.

가속도계와 자이로스코프 데이터를 사용한 인간 행동 인식 기반의 템포 지향 음악 추천 시스템 (Tempo-oriented music recommendation system based on human activity recognition using accelerometer and gyroscope data)

  • 신승수;이기용;김형국
    • 한국음향학회지
    • /
    • 제39권4호
    • /
    • pp.286-291
    • /
    • 2020
  • 본 논문에서는 템포 기반의 음악 분류와 센서 기반의 인간 행동 인식을 통한 음악을 추천하는 시스템을 제안한다. 제안하는 방식은 템포 기반의 음악 분류를 통해 음악 파일을 색인하고, 인식된 행동에 따라 적합한 음악을 추천한다. 정확한 음악 분류를 위해 변조 스펙트럼 기반의 동적 분류기와 멜 스펙트로그램 기반의 시퀀스 분류기가 함께 사용된다. 또한, 간단한 스마트폰 가속도계, 자이로스코프 센서 데이터가 심층 스파이킹 신경망에 적용되어 행동 인식 성능을 향상시킨다. 마지막으로 인식된 행동과 색인된 음악 파일의 관계를 고려한 매핑 테이블을 통해 음악 추천이 수행된다. 실험 결과는 제안된 시스템이 음악 플레이어가 있는 실제 모바일 장치에 사용하기에 적합하다는 것을 보여준다.

Antidepressant drug paroxetine blocks the open pore of Kv3.1 potassium channel

  • Lee, Hyang Mi;Chai, Ok Hee;Hahn, Sang June;Choi, Bok Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권1호
    • /
    • pp.71-80
    • /
    • 2018
  • In patients with epilepsy, depression is a common comorbidity but difficult to be treated because many antidepressants cause pro-convulsive effects. Thus, it is important to identify the risk of seizures associated with antidepressants. To determine whether paroxetine, a very potent selective serotonin reuptake inhibitor (SSRI), interacts with ion channels that modulate neuronal excitability, we examined the effects of paroxetine on Kv3.1 potassium channels, which contribute to high-frequency firing of interneurons, using the whole-cell patch-clamp technique. Kv3.1 channels were cloned from rat neurons and expressed in Chinese hamster ovary cells. Paroxetine reversibly reduced the amplitude of Kv3.1 current, with an $IC_{50}$ value of $9.43{\mu}M$ and a Hill coefficient of 1.43, and also accelerated the decay of Kv3.1 current. The paroxetine-induced inhibition of Kv3.1 channels was voltage-dependent even when the channels were fully open. The binding ($k_{+1}$) and unbinding ($k_{-1}$) rate constants for the paroxetine effect were $4.5{\mu}M^{-1}s^{-1}$ and $35.8s^{-1}$, respectively, yielding a calculated $K_D$ value of $7.9{\mu}M$. The analyses of Kv3.1 tail current indicated that paroxetine did not affect ion selectivity and slowed its deactivation time course, resulting in a tail crossover phenomenon. Paroxetine inhibited Kv3.1 channels in a use-dependent manner. Taken together, these results suggest that paroxetine blocks the open state of Kv3.1 channels. Given the role of Kv3.1 in fast spiking of interneurons, our data imply that the blockade of Kv3.1 by paroxetine might elevate epileptic activity of neural networks by interfering with repetitive firing of inhibitory neurons.