• Title/Summary/Keyword: Sphingomonas sp.

Search Result 46, Processing Time 0.03 seconds

Biodegradation of Fungicide Tolclofos-methyl by Sphingomonas sp. 224 (Sphingomonas sp. 224 균주에 의한 살균제 tolclofos-methyl의 분해)

  • Kwak, Yun-Young;Shin, Kab-Sik;Lee, Sang-Man;Kim, Jang-Eok;Rhee, In-Koo;Shin, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.388-395
    • /
    • 2010
  • In order to decrease level of an organophosphorus fungicide, tolclofos-methyl, from in situ ginseng cultivating soil, we isolated a tolclofos-methyl degrading bacteria from ginseng cultivating soil samples. The bacterial strain removed tolclofos-methyl around 95% after 3 days incubation with complete liquid media. The strain was identified as Sphingomonas sp. by 16S rDNA sequence comparison, and designated as Sphingomonas sp. 224. Through the GC-MS analysis, Sphingomonas sp. 224 was proposed to have an initiative degradation pathway generating the metabolite such as 2,6-dichloro-4-methyl phenol compound from tolclofos-methyl. In addition, Sphingomonas sp. 224 was confirmed representing the effective degrading capability to tolclofosmethyl in situ soil.

Characterization of Phenanthrene Degradation by Sphingomonas sp. HS362 (Sphingomonas sp. HS362에 의한 Phenanthrene 분해특성)

  • Kim Su Hwa;Hong Seung-Bok;Kang Hee Jeong;Ahn Jin-Chul;Jeong Jae Hoon;Son Seung-Yeol
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.201-207
    • /
    • 2005
  • A phenanthrene-degrading bacterium HS362, which is capable of using phenanthrene as a sole carbon and energy source, was isolated from oil contaminated soil. This strain is a gram negative, rod shaped organism that is most closely related to Sphingomonas paucimobilis based on biochemical tests, and belongs to the genus Sphingomonas based on fatty acids analysis. It exhibited more than $99.2{\%}$ nucleotide sequence similarity of 16S rDNA to that of Sphingomonas CF06. Thus, we named this strain as Sphingomonas sp. HS362. It degraded $98{\%}$ of phenanthrene after 10 days of incubation when phenanthrene was added at 500 ppm and $30{\%}$ even when phenanthrene was added at 3000 ppm. Sphingomonas sp. HS362 could also degrade low molecular weight PAHs(Polycyclic aromatic hydrocarbons) such as indole and naphthalene, but was unable to degrade high molecular weight PAHs such as pyrene and fluoranthene. The optimum temperature and pH for phenanthrene degradation were $30^{\circ}C$ and $4{\~}8$, respectively. Sphingomonas sp. HS362 could degrade phenanthrene effectively in the concentration range of NaCl of up to $1{\%}$. Its phenanhrene degrading ability was enhanced by preculture, suggesting the possibility of induction of phenanthrene degrading enzymes. Starch and surfactants such as SDS, Tween 85, and Triton X-100 were also able to enhance phenanthrene degradation by Sphingomonas sp. HS362. It carries five plasmids and one of them, plasmid p4, is considered to be involved in the degradation of phenanthrene according to the plasmid curing experiment by growing at $42^{\circ}C$.

Effect of Rhamnolipids on Degradation of Anthracene by Two Newly Isolated Strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B

  • Cui, Chang-Zheng;Zeng, Chi;Wan, Xia;Chen, Dong;Zhang, Jia-Yao;Shen, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.63-66
    • /
    • 2008
  • Anthracene is a PAH that is not readily degraded, plus its degradation mechanism is still not clear. Thus, two strains of anthracene-degrading bacteria were isolated from long-term petroleum-polluted soil and identified as Sphingomonas sp. 12A and Pseudomonas sp. 12B by a 16S rRNA sequence analysis. To further enhance the anthracene-degrading ability of the two strains, the biosurfactants produced by Pseudomonas aeruginosa $W_3$ were used, which were characterized as rhamnolipids. It was found that these rhamnolipids dramatically increased the solubility of anthracene, and a reverse-phase HPLC assay showed that the anthracene degradation percentage after 18 days with Pseudomonas sp. 12B was significantly enhanced from 34% to 52%. Interestingly, their effect on the degradation by Sphingomonas sp. 12A was much less, from 35% to 39%. Further study revealed that Sphingomonas sp. 12A also degraded the rhamnolipids, which may have hampered the effect of the rhamnolipids on the anthracene degradation.

Novel insight into the role of thiamine for the growth of a lichen-associated Arctic bacterium, Sphingomonas sp., in the light (Sphingomonas 속 세균의 명조건 생장에서 티아민의 필수적인 역할)

  • Pham, Nhung;Pham, Khoi;Lee, ChangWoo;Jang, Sei-Heon
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Bacteria in the polar region are under strong light and ultraviolet radiation. In this study, we investigated the effects of light on the growth of a psychrophilic bacterium, Sphingomonas sp. PAMC 26621, isolated from an Arctic lichen Cetraria sp. The growth of the strain in the light was lower than that in the dark. Surprisingly, thiamine increased the growth of Sphingomonas sp. PAMC 26621 in M9 minimal medium under light conditions. Thiamine increased the growth of the strain in a concentration-dependent manner along with ascorbic acid. N-acetylcysteine had no effect on the growth of the strain in the light. Thiamine and ascorbic acid also increased the activities of glucose-6-phosphate dehydrogenase and superoxide dismutase. The results of this study indicate that thiamine provided by the lichen symbiosis system plays an important role in light-induced oxidative stress in this Arctic bacterium as an antioxidant. Our study provide insight into the biochemistry and physiology of Arctic bacteria under strong light and ultraviolet radiation.

Multiple liver infection by Sphingomonas sp. and Bacillus sp. in a wild rodent (Apodemus agrarius): a case report

  • Kim, Jiro;Monoldorova, Sezim;Kim, Soojin;Kim, Nam Kyung;Kim, Jinsol;Kim, Joon Hee;Jeon, Bo-Young
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.1
    • /
    • pp.71-74
    • /
    • 2017
  • The first case of liver infection caused by Sphingomonas sp. and Bacillus sp. in a wild rodent is reported. A captured wild rodent, Apodemus agrarius (A. agrarius), presented with multiple liver abscess-like nodules (diameter 0.7~2.4 mm) in which Gram-positive and Gram-negative bacilli were detected simultaneously. These were grown in aerobic and anaerobic cultures, respectively, and were identified as Sphingomonas sp. and Bacillus sp., respectively, according to 16S rRNA sequencing.

Characterization of Petroleum Hydrocarbon Degradation by a Sphingomonas sp. 3Y Isolated from a Diesel-Contaminated Site. (디젤오염지역에서 분리한 세균 Sphingomonas sp. 3Y의 석유계 탄화수소분해특성)

  • Ahn, Yeong-Hee;Jung, Byung-Gil;Sung, Nak-Chang;Lee, Young-Ok
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.659-663
    • /
    • 2009
  • Bacterial stain 3Y was isolated from a site that was contaminated with diesel for more than 15 years. The strain could grow on various petroleum using hydrocarbons as the sole carbon source. The strain grew not only on aliphatic hydrocarbons but also on aromatic hydrocarbons. 3Y grew on aliphatic petroleum hydrocarbons hexane or hexadecane, and aromatic petroleum hydrocarbons BTEX, phenol, biphenyl, or phenanthrene. The strain showed aromatic ring dioxygenase and meta-cleavage dioxygenase activities as determined by tests using indole and catechol. Aromatic ring dioxygenase is involved in the initial step of biodegradation of aromatic hydrocarbons while meta-cleavage dioxygenase catalyzes the cleavage of the benzene ring. Based on a nucleotide sequence analysis of its 16S rRNA gene, 3Y belongs to the genus Sphingomonas. A phylogenetic tress was constructed based on the nucleotide sequences of closest relatives of 3Y and petroleum hydrocarbon degrading sphingomonads. 3Y was in a cluster that was different from the cluster that contained well-known sphingomonads. The results of this study suggest that 3Y has the potential to cleanup oil-contaminated sites. Further investigation is warranted to optimize conditions to degrade petroleum hydrocarbons by the strain to develop a better bioremediation strategy.

Structure and Function of the phnF Gene of Pseudomonas sp. Strain DJ77 (Pseudomonas sp. Strain DJ77에서 phnF 유전자의 구조)

  • 이성훈;김성재;신명수;김치경;임재윤;이기성;민경희;김영창
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.92-96
    • /
    • 1997
  • The 6.8 kb Xhol fragment of chromosomal ONA of Pseudomonas sp. 0177 contains the phnDEFG genes involved in the degradation of polyaromatic hydrocarbons and chlorinated aromatics. Here, we report the nucleotide sequence of the ORF encoding a polypeptide consisted of 143 amino acids with a Mr of 13,859. The nucleotide sequence of the ORF is 99% and 68.6% identical to the downstream region of catE of Sphingomonas sp. strain HV3 and the ORF between xylE and xylG of Sphingomonas yanoikuyae Bl, respectively. The deduced amino acid sequence of the PhnF has 62.3% identity with the amino acid encoded hy orfY region of Citrobacter freundii DSM30040. We now confirm that the ORF is located between the catechol 2,3-dioxygenase (C230), phnE, and 2-hydroxymuconic semialdehyde dehydrogenase (2HMSO), phnG.

  • PDF

Production of Algal Biomass and High-Value Compounds Mediated by Interaction of Microalgal Oocystis sp. KNUA044 and Bacterium Sphingomonas KNU100

  • Na, Ho;Jo, Seung-Woo;Do, Jeong-Mi;Kim, Il-Sup;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.387-397
    • /
    • 2021
  • There is growing interest in the production of microalgae-based, high-value by-products as an emerging green biotechnology. However, a cultivation platform for Oocystis sp. has yet to be established. We therefore examined the effects of bacterial culture additions on the growth and production of valuable compounds of the microalgal strain Oocystis sp. KNUA044, isolated from a locally adapted region in Korea. The strain grew only in the presence of a clear supernatant of Sphingomonas sp. KNU100 culture solution and generated 28.57 mg/l/d of biomass productivity. Protein content (43.9 wt%) was approximately two-fold higher than carbohydrate content (29.4 wt%) and lipid content (13.9 wt%). Oocystis sp. KNUA044 produced the monosaccharide fucose (33 ㎍/mg and 0.94 mg/l/d), reported here for the first time. Fatty acid profiling showed high accumulation (over 60%) of polyunsaturated fatty acids (PUFAs) compared to saturated (29.4%) and monounsaturated fatty acids (9.9%) under the same culture conditions. Of these PUFAs, the algal strain produced the highest concentration of linolenic acid (C18:3 ω3; 40.2%) in the omega-3 family and generated eicosapentaenoic acid (C20:5 ω3; 6.0%), also known as EPA. Based on these results, we suggest that the application of Sphingomonas sp. KNU100 for strain-dependent cultivation of Oocystis sp. KNUA044 holds future promise as a bioprocess capable of increasing algal biomass and high-value bioactive by-products, including fucose and PUFAs such as linolenic acid and EPA.

Biodegradation of Phenanthrene by Sphingomonsa sp. Strain KH3-2

  • Shin, Su-Kyuong;Oh, Young-Sook;Kim, Sang-Jin
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.185-192
    • /
    • 1999
  • A phenanthrene-degrading bacterium was isolated from an oil-spilled intertidal sediment sample and identified as Sphingomonas sp. KH3-2. The strain degraded polycyclic aromatic compounds such naphthalene, fluorene, biphenyl, and dibenzothiophene. When strain KH3-2 was cultured for 28 days at 25C, a total of 500 ppm of phenanthrene was degrated with a concomitant production of biomass and Folin-Ciocalteau reactive aromatic intermediates. Analysis of intermediates during phenanthrene degradation using high-performance liquid chromatography and gas chromatography/mass spectrometry indicated that Sphingomonas sp. KH3-2 primarily degrades phenanthrene to 1-hydroxy-2-naphthoic acid (1H2NA) and further metabolizes 1H2NA through the degradation pathway of naphthalene.

  • PDF