• Title/Summary/Keyword: Spherical Hole

Search Result 27, Processing Time 0.028 seconds

Prevent Air-core During Draining with Semi Spherical Mesh (반구형 그물망을 이용한 배수시 생성되는 공기 기둥 억제 연구)

  • Han, Eun-Su;Park, Il-Seouk;Sohn, Chang-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.38-43
    • /
    • 2011
  • When draining takes place through an axially located drain port in a cylindrical tank without any prevent, a vortex with an air core occurs. In this study, semi spherical concave and convex meshes with different size inner hole are used to find the air core can suppress. The study is carried out with different values of inner hole of mesh and different install direction of semi spherical mesh using PIV and measured velocity distribution. By providing a mesh, the air core can be prevented, even if the ratio of inner hole of mesh and diameter of cylinder is around 0.66. The experimental results show that a convex mesh type is more effective to suppress the air core generation than a concave mesh type.

SPHERICAL WIND ACCRETION ONTO SUPERMASSIVE BLACK HOLE (우리은하 중심의 초거대 질량 블랙홀에 대한 구형 항성풍 부착)

  • Im, Su-Yeon;Park, Myeong-Gu
    • Publications of The Korean Astronomical Society
    • /
    • v.10 no.1
    • /
    • pp.79-90
    • /
    • 1995
  • The unique compact radio source, Sgr $A^*$, at the Galactic center show many observational signs that it is powered by supermassive black hole. Recent observations also imply that it is surrounded by winds from nearby IR sources. So we explore the model in which multiwavelength spectrum from Sgr $A^*$ is due to the spherical accretion of these winds onto the central supermassive black hole. Improving upon the previous work, we allowed the possibility that ions and electrons have different temperatures, included the Compton effects and pair processes. Electrons radiate via cyclosynchrotron and bresstrahlung with comptoniztion. We find that ion approaches the virial temperature ${\sim}10^{13}K$ while electron temperature saturates at ${\sim}10^{10}K$. However, decoupling between ion and electron does not greatly affect the shape of the emission spectrum. When the mass of the black hole is ${\sim}10^6M_{\odot}$, radio, IR, X-ray, $\gamma$-ray band spectrum is reasonably explained by the model. Yet Compton effect which is neglected in previous works produces significant emission in IR band, which is marginally compatible with observations. Pair production is negligible and annihilation lines cannot be observed.

  • PDF

A Study on Prevention of Central Burst Defects in Wire Drawing (인발공정의 내부결함 방지에 관한 연구)

  • 고대철;김병민;강범수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3098-3107
    • /
    • 1994
  • The central burst defects, so-called chevroning, in wire drawing are analyzed by the rigid-plastic finite element method. The occurrence of central burst defects in wire drawing is estimated by the distribution of the hydrostatic pressure around the central part of the workpiece. It has been possible to obtain numerical boundaries which, in reduction in area vs. semicone angle plane, divide the safe and the danger zones, depending on friction factors and material properties. Based on the results of the analysis, it is suggested that the previous criterion derived from the upper bound analysis should be modified for better prediction of the defects. The back tension and the billet with a spherical hole on the central axis are also included in the analysis of the defects.

EVOLUTIONARY MODELS OF ROTATING DENSE STELLAR SYSTEMS WITH EMBEDDED BLACK HOLES

  • FIESTAS, JOSE A.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.345-347
    • /
    • 2015
  • We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of an initial axi-symmetry due to rotation. Central black hole seeds are included in our models, and black hole growth due to the consumption of stellar matter is simulated until the central potential dominates the kinematics of the core. Our goal is to study the long-term evolution (Gyr) of relaxed dense stellar systems which deviate from spherical symmetry, and their morphology and final kinematics. With this purpose in mind, we developed a 2D Fokker-Planck analytical code, and confirmed its results using detailed N-Body simulations, applying a high performance code developed for GPU machines. We conclude that the initial rotation significantly modifies the shape and lifetime of these systems, and cannot be neglected in the study of the evolution of globular clusters, and the galaxy itself. Our models give a constraint for the final intermediate black hole masses expected to be present in globular clusters.

Measurement of Spray Characteristics for Gasoline Injector Using the Image Processing Technology (화상처리 기술을 이용한 가솔린 인젝터의 분무 특성 측정)

  • Lee, K.H.;Lee, C.S.;Lee, C.H.;Lee, J.S.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.68-74
    • /
    • 2000
  • A this experimental study is executed to analyze spray characteristics for air-shrouded injector and 4hole 2spray type injector used in a gasoline engine. Since spray parameters including spray penetration and angle, SMD, and atomization characteristics are very important to increase the engine performance, the image processing algorithm for measuring the non-spherical spray diameter is developed. Spray characteristics of the air-shrouded injector(2hole 2spray) and 4hole-2spray injector are analyzed respectively by this digital image processing method. Effective spray characteristics to injectors is derived from this experimentation and obtained the design guide for gasoline injector.

  • PDF

Estimating Geometric Transformation of Planar Pattern in Spherical Panoramic Image (구면 파노라마 영상에서의 평면 패턴의 기하 변환 추정)

  • Kim, Bosung;Park, Jong-Seung
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1185-1194
    • /
    • 2015
  • A spherical panoramic image does not conform to the pin-hole camera model, and, hence, it is not possible to utilize previous techniques consisting of plane-to-plane transformation. In this paper, we propose a new method to estimate the planar geometric transformation between the planar image and a spherical panoramic image. Our proposed method estimates the transformation parameters for latitude, longitude, rotation and scaling factors when the matching pairs between a spherical panoramic image and a planar image are given. A planar image is projected into a spherical panoramic image through two steps of nonlinear coordinate transformations, which makes it difficult to compute the geometric transformation. The advantage of using our method is that we can uncover each of the implicit factors as well as the overall transformation. The experiment results show that our proposed method can achieve estimation errors of around 1% and is not affected by deformation factors, such as the latitude and rotation.

Interfacial shear strength test by a hemi-spherical microbond specimen of carbon fiber and epoxy resin (탄소섬유/에폭시의 반구형 미소접합 시험편에 대한 계면강도 평가)

  • Park, Joo-Eon;Gu, Ja-Uk;Kang, Soo-Keun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.15-21
    • /
    • 2008
  • Interfacial shear strength between epoxy and carbon fiber was analyzed utilizing a hemi-spherical microbond specimens adhered onto single carbon fiber. The hemi-spherical microbond specimen showed high regression coefficient and small standard deviation in the measurement of interfacial strength as compared with a droplet and an inverse hemi-spherical one. This seemed to be caused by the reduced meniscus effects and the reduced stress concentration In the region contacting with a pin-hole loading device. Finite element analysis showed that the stress distributions along the fiber/matrix interface in the hemi-spherical specimen had a stable shear stress distribution along the interface without any stress mode change. The experimental data was also different according to the kinds of loading device such as the microvise-tip and the pin-holed plate.

A Study on the Flow Characteristics in Axial Flow Rotors with Varying Tip Clearance (축류회전차에서 팁간극의 변화를 고려한 유동특성에 관한 연구)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.353-361
    • /
    • 2002
  • The tip leakage flow passing through the clearance between rotor blade tip and casing shroud has been known to occupy an important portion of the rotor overall loss. In this study, flow characteristics in axial flow rotors with different tip clearances is investigated by experimental and numerical methods. The experimental study was carried out to measure static pressure and velocity profiles at the real rotating test rig. The axial flow rotors used for the experiments have ten blades and three different rotor diameter. The tip clearance heights are 1mm, 3mm, and 4.5mm. Measurements were done using spherical type five-hole probe by non-nulling method. The numerical study was carried out to calculate pressure distributions and velocity vectors at the same condition as the experiments in the flow fields of axial flow rotors using Phoenics code.

A Circular Bimorph Deformable Mirror for Circular/Annulus/Square Laser Beam Compensation

  • Lee J.H.;Lee Y.C.;Cheon H.J.
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • We are studying the application of an adaptive optics system to upgrade the beam quality of a laser. The adaptive optics (AO) system consists of a bimorph deformable mirror, a Shack-Hartmann sensor and a control system. In most AO applications, the beam aperture is considered to be circular. However, in some cases such as laser beams from unstable resonators, the beam apertures are annulus or a holed-rectangle. In this paper, we investigate how well a bimorph deformable mirror of ${\Phi}120\;mm$ clear aperture can compensate phase distortions for three different beam configurations; 1) ${\Phi}120\;mm$ circular aperture, 2) ${\Phi}100\;mm$ annulus aperture with a ${\Phi}20\;mm$ hole and 3) $70\;mm{\times}70\;mm$ square aperture with a hole of $30\;mm{\times}30\;mm$. This study concludes that the bimorph mirror, which might be considered as a modal controller, can compensate tilt, defocus, coma and astigmatism, and spherical aberration for all three beams.