DOI QR코드

DOI QR Code

A Circular Bimorph Deformable Mirror for Circular/Annulus/Square Laser Beam Compensation

  • Lee J.H. (Dept. Of Applied Optical Science, Kongju National University) ;
  • Lee Y.C. (Agency for Defense Development) ;
  • Cheon H.J. (Samsung Tales (Ltd))
  • Received : 2006.02.13
  • Published : 2006.03.01

Abstract

We are studying the application of an adaptive optics system to upgrade the beam quality of a laser. The adaptive optics (AO) system consists of a bimorph deformable mirror, a Shack-Hartmann sensor and a control system. In most AO applications, the beam aperture is considered to be circular. However, in some cases such as laser beams from unstable resonators, the beam apertures are annulus or a holed-rectangle. In this paper, we investigate how well a bimorph deformable mirror of ${\Phi}120\;mm$ clear aperture can compensate phase distortions for three different beam configurations; 1) ${\Phi}120\;mm$ circular aperture, 2) ${\Phi}100\;mm$ annulus aperture with a ${\Phi}20\;mm$ hole and 3) $70\;mm{\times}70\;mm$ square aperture with a hole of $30\;mm{\times}30\;mm$. This study concludes that the bimorph mirror, which might be considered as a modal controller, can compensate tilt, defocus, coma and astigmatism, and spherical aberration for all three beams.

Keywords

References

  1. J. M. Beckers, 'Adaptive Optics for Astronomy: Principles, Performance and Applications,' Annual Review of Astronomy and Astrophysics, vol. 31, pp. 13-22, 1993 https://doi.org/10.1146/annurev.aa.31.090193.000305
  2. A. V. Kudryashov and V. V. Samarkin, 'Control of high power $CO_2$ laser beam by adaptive optical elements,' Opt. Comm., vol. 118, pp. 317-322, 1995 https://doi.org/10.1016/0030-4018(95)00218-W
  3. J. L. Gargasson, M. Glanc, and P. Lena, 'Retinal Imaging with adaptive optics,' C. R. Acad. Sci. Paris., t.2, Serie IV, pp. 1131-1138, 2001 https://doi.org/10.1016/S1296-2147(01)01261-6
  4. S. Arnon and N. S. Kopeika, 'Adaptive optical transmitter and receiver for space communication through thin clouds,' Appl. Opt., vol. 36, no. 9, pp. 1987- 1993, 1997 https://doi.org/10.1364/AO.36.001987
  5. Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, 'Computational adaptive optics for live three-dimensional biological imaging,' PNAS, vol. 98, no. 7, pp. 3790-3795, 2001 https://doi.org/10.1073/pnas.071275698
  6. M. L. Holohan and J. C. Dainty, 'Low-order adaptive optics: a possible use in underwater imaging?,' Optics & Laser Technology, vol. 29, no. 1, pp. 51-55, 1997 https://doi.org/10.1016/S0030-3992(96)00051-5
  7. J. H. Lee, D. D. Walker, and A. P. Doel, 'Pupil plane wavefront sensing with a static pyramidal prism: simulation and preliminary evaluation,' J. Opt. Soc. Korea, vol. 4, no. 1, pp. 1-6, 2000 https://doi.org/10.3807/JOSK.2000.4.1.001
  8. J. H. Lee, Y. C. Lee, and E. C. Kang, 'Investigation to Performance Degradation of Shack Hartmann Wavefront Sensing Due to Pupil Irradiance Profile,' J. Opt. Soc. Korea, vol. 10, no.1, pp. 23-27, 2006 https://doi.org/10.3807/JOSK.2006.10.1.016
  9. R. J. Noll, 'Zernike polynomials and atmospheric turbulence', J. Opt. Soc. Am., vol. 66, no. 3, 207-211, 1976 https://doi.org/10.1364/JOSA.66.000207
  10. Jun Ho Lee, Tae Kyung Uhm, and Sung-Kie Youn, 'First. Order Analysis of Thin-Plate Deformable Mir-rors,' Journal of the Korean Physical Society, vol. 44, no. 6, pp. 1412-1416, 2004

Cited by

  1. A Cooled Deformable Bimorph Mirror for a High Power Laser vol.10, pp.2, 2006, https://doi.org/10.3807/JOSK.2006.10.2.057