• Title/Summary/Keyword: Spent fuel Management

Search Result 156, Processing Time 0.027 seconds

Graphic Simulator for Analyzing the Remote Operation of the Advanced Spent Fuel Conditioning Process

  • Song, Tai-Gil;Kim, Sung-Hyun;Lee, Jong-Ryul;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1319-1322
    • /
    • 2003
  • KAERI is developing the Advanced Spent Fuel Conditioning Process (ACP) as a pre-disposal treatment process for spent fuel. Equipment used for such a spent fuel recycling and management process must operate in intense radiation fields as well as in a high temperature. Therefore, remote maintenance has a played a significant role in this process because of combined chemical and radiological contamination. Hence suitable remote handling and maintenance technology needs to be developed along with the design of the process concepts. To do this, we developed the graphic simulator for the ACP. The graphic simulator provides the capability of verifying the remote operability of the process without fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the graphic simulator, not in a real environment. The graphic simulator will substantially reduce the cost of the development of the remote handling and maintenance procedure as well as the process equipment, while at the same time producing a process and a remote maintenance concept that is more reliable, easier to implement, and easier to understand.

  • PDF

Analysis of Transportation and Handling system for Advanced spent fuel management process (사용후핵연료 차세대관리공정 운반취급계통 분석)

  • 홍동희;윤지섭;정재후;김영환;박병석;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1438-1441
    • /
    • 2003
  • The project for "Development of Advanced Spent Fuel Management Technology" has a plan of a demonstration for the Advanced Management Process in the hot cell of IMEF. The Advanced Management Process are being developed for efficient and safe management of spent fuels. For the demonstration, several devices which are used to safely transport and handle nuclear materials without scattering have been derived by analyzing the Advanced Management Process, object nuclear material and modules of process equipment and performing graphical simulation of transportation/handling by computers. For verification, powder transportation vessel and handling device have been designed and manufactured. And several tests such as transporting, grappling, rotating the vessel have been performed. Also, the design requirements of transportation/handling equipment have been analyzed based on test results and process studies. The developed design requirements in this research will be used as the design data for the Advanced Management Process.

  • PDF

Assessing the Potential of Small Modular Reactors (SMRs) in Spent Nuclear Fuel Management: A Review of the Generation IV Reactor Progress

  • Hong June Park;Sun Young Chang;Kyung Su Kim;Pascal Claude Leverd;Joo Hyun Moon;Jong-Il Yun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.571-576
    • /
    • 2023
  • The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.

Virtual Prototyping of Spent Fuel Disassembling Process Using Graphic Simulator (그래픽 시뮬레이터에 의한 사용후핵연료 집합체 해체공정 가상모형)

  • 이종열;송태길;김성현;김영환;홍동희;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.760-763
    • /
    • 2001
  • In this study, the graphical design system is developed and the digital mock-up is implemented for designing the spent fuel handling and disassembling processes. This system is used throughout the design stages from the conceptual design to the motion analysis. By using this system, all the processes involved in the spent fuel handling and disassembling precesses are analyzed and optimized. Also, this system is used in developing the on-line graphic simulator to enhance the reliability and safety of the spent fuel handling process by providing the remote monitoring function of the process. The graphical design system and the digital mock-up system can be effectively used for designing the process equipment, as well as the optimization of the main processes and maintenance processes of the spent fuel management.

  • PDF

Managing the Back-end of the Nuclear Fuel Cycle: Lessons for New and Emerging Nuclear Power Users From the United States, South Korea and Taiwan

  • Newman, Andrew
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.435-446
    • /
    • 2021
  • This article examines the consequences of a significant spent fuel management decision or event in the United States, South Korea and Taiwan. For the United States, it is the financial impact of the Department of Energy's inability to take possession of spent fuel from commercial nuclear power companies beginning in 1998 as directed by Congress. For South Korea, it is the potential financial and socioeconomic impact of the successful construction, licensing and operation of a low and intermediate level waste disposal facility on the siting of a spent fuel/high level waste repository. For Taiwan, it is the operational impact of the Kuosheng 1 reactor running out of space in its spent fuel pool. From these, it draws six broad lessons other countries new to, or preparing for, nuclear energy production might take from these experiences. These include conservative planning, treating the back-end of the fuel cycle holistically and building trust through a step-by-step approach to waste disposal.

Challenges of implementing the policy and strategy for management of radioactive waste and nuclear spent fuel in Indonesia

  • Wisnubroto, D.S.;Zamroni, H.;Sumarbagiono, R.;Nurliati, G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.549-561
    • /
    • 2021
  • Indonesia has policies and strategies for the management of radioactive waste and spent nuclear fuel that arises from the use of nuclear research and development facilities, including three research reactors, and the use of radioisotopes in medicine and industries. The Indonesian government has provided extensive facilities such as an independent regulatory organization (BAPETEN) and a centralized radioactive waste management organization (CRWT-BATAN). Further, the presence of regulations and several international conventions guarantee the protection of the public from all risks due to handling radioactive waste and spent nuclear fuel. However, the sustainability of radioactive waste management in the future faces various challenges, such as disposal issues related to not only to site selection but also financing of radioactive waste management. Likewise, the problem of transportation persists; as an archipelago country, Indonesia still struggles to manage the infrastructure required for the transport of radioactive materials. The waste from the production of the radioisotopes, especially from the production of 99Mo, requires special attention because BATAN has never handled it. Indonesia should also resolve the management of NORM from various activities. In Indonesia, the definition of radioactive waste does not include NORM. Therefore, the management of this waste needs revision and improvement on the regulations, infrastructure, and technology.

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

Thermodynamic Study of Sequential Chlorination for Spent Fuel Partitioning

  • Jinmok Hur;Yung-Zun Cho;Chang Hwa Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.397-410
    • /
    • 2023
  • This study examined the efficacy of various chlorinating agents in partitioning light water reactor spent fuel, with the aim of optimizing the chlorination process. Through thermodynamic equilibrium calculations, we assessed the outcomes of employing MgCl2, NH4Cl, and Cl2 as chlorinating agents. A comparison was drawn between using a single agent and a sequential approach involving all three agents (MgCl2, NH4Cl, and Cl2). Following heat treatment, the utilization of MgCl2 as the sole chlorinating agent resulted in a moderate separation. Specifically, this method yielded a solid separation with 96.9% mass retention, 31.7% radioactivity, and 44.2% decay heat, relative to the initial spent fuel. In contrast, the sequential application of the chlorinating agents following heat treatment led to a final solid separation characterized by 93.1% mass retention, 5.1% radioactivity, and 15.4% decay heat, relative to the original spent fuel. The findings underscore the potential effectiveness of a sequential chlorination strategy for partitioning spent fuel. This approach holds promise as a standalone technique or as a complementary process alongside other partitioning processes such as pyroprocessing. Overall, our findings contribute to the advancement of spent fuel management strategies.

The Public Sphere and the Conflict-Structure in Spent Nuclear Fuel Management (사용후핵 연료 관리 이슈 공론장과 그 갈등구조에 관한 소고)

  • Choi, Seong-Kyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.49-62
    • /
    • 2009
  • Social Acceptance is important to decide policy of spent nuclear fuel management. The idea of a public sphere as a receptacle of dynamic process is the core in this discussion. The purpose of this study is to examine the concept, participants, the conflict-structure and agreeable conditions of a public sphere. A public sphere means in this paper, mechanism and systems that various stakeholders' and public's participation with spontaneous will can affect decision-making process. For good designing and implementing a public sphere, it is necessary to analysis and cope with political, foreign and security, economic, sociocultural environments, the law and systems around spent nuclear fuel management.

  • PDF

Present Status and Future of Spent Fuel Management(1) - National Strategies and Their Implementations (사용후핵연료관리의 현황 및 미래(1) -국가별 관리전략과 그 이행-)

  • Park, Won-Jae;Suk, Tae-Won
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.59-72
    • /
    • 1996
  • The continuous expansions and development of nuclear power have led to generation of the significant volume of spent fuels and radioactive wastes. And so, safe and effective management of the spent fuel has been becoming internationally sensitive and significant issue since the early 1990s. Especially, more importance would be added in the view point of international politics, because of recent political changes in the countries of Eastern Europe including dissociation of the former Soviet Union and the difficulties faced by the nuclear industries worldwide. Accordingly, this paper is proposed to show an overview of national strategies and Policies on the spent fuel management, that are being assessed and carried out worldwide at this time. The overview is based on recent developments of the national strategies, their implementations and some related experiences presented in IAEA International meetings and some technical papers.

  • PDF